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Abstract

This paper describes the methodology employed in
the design of the G4 S/890 microprocessor. Issues of
verifying-design metrics of power, noise; timing, and

functional correctness are discussed within the context

of a performance-driven transistor-level custom design
approach. Semi-automated techniques to encourage
designer productivity consistent with the objectives of
a high-frequency deep submicron design point are pre-
sented as are the practical issues associated with man-
aging the complezity of an 8 million transistor design.

1 Introduction

The Generation-4 $/390 CMOS microprocessor is

a 17.35-mm x 17.35-mm chip with 7.8 million transis-
tors and has been successfully operated at frequen-
cies up to 400 MHz[l]. Because of overall system
performance requirements; a high-frequency design
point was pursued with aggressive use of an advanced
0.2umL,;s CMOS process. The methodolgy had to
enable transistor-level optimization while dealing with
the unique challenged of deep submicron design. Ag-
gressive semi-automated techniques to encourage de-
signer productivity and maintain schedule integrity
were also an essential part of the design process. Issues
of power, noise, timing, and interconnect modelling
required the development of new methodologies and
tools consistent with the stringent demands of reliabil-
ity and testability required for parts for the high-end
server market.

We first describe the manner in which the design
data was organized, stressing abstraction and con-
trolled hierarchical organization of the design as the
means to manage complexity. In the following sec-
tion, we describe the logic verification methodology
which combines aggressive use of cycle simulation and
Boolean comparison. In the next two sections, we de-
scribe circuit and chip-level design methodologies, em-
phasizing the synergy between semi-automated syn-
thesls processes and pure custom design. We then de-
vote several sections to the methodologies associated
with interconnect modelling, timing, power, and noise
analysis. In each case, we address the unique chal-
lenges of deep submicron design within the context of
a transistor-level focus.
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2 Design organization

Design abstraction is one of the key methodology
techniques used to manage complexity. In the G4 mi-
croprocessor design, all analysis-and verification are
accomplished with a two-level-hierarchical approach
which involves identifying groups of 10,000 to 200,000
nonsarray transistors as macros. The design also con-

© sists of several large SRAM macros, a ROM macro,
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and several multi-port register file or scannable array
macros. Macros are individually laid out and floor-
planning on the chip and form the main unit of the
division-of-labor that allows the design processes to be
parallelized. At the macro level, one would typically
find the following design abstractions in the central
database:

e symbol. Schematic representation of the ports of
the macro and their directionality.

o -entity. The VHDL entity for the design, automat-
ically created fromthe symbol.

e schematic. A schematic representation of the
transistor-level implementation of the macro.
The schematic may in itself be a hierarchy of
other sub-macro symbols and schematics.

e architecture. A VHDL architecture description
of the function of the macro, used for simulation
and Boolean equivalence checking.

e timing graph. A timing graph abstraction created
by transistor-level timing.

e logical constraints view. This view contains
Boolean satisfiability constraints in the imple-
mentation which are are tested through BDD
techniques and used by timing and noise analysis.

e layout. The physical design of the macro which
may be a hierarchy of other sub-macro symbols
and schematics.

# faultmodel. A schematic of logic and sequential
primitives used for generating test patterns and
determining single stuck-at fault coverage.

e power view. An abstraction of the current de-
mands of each macro on the supply and ground
distributions. This is used to determine the chip



power dissipation and to estimate power supply
noise.

o abstract. This is a simplified view of the lay-
out, which can be used for floorplanning, place
and route, and global extraction. The amount of
shapes information varies during the course of the
design process.

e noise abstract. A noise abstraction created by
transistor-level noise analysis.

Above the macro level is a hierarchy of schematics,
symbols, and layouts which constitute the global in-
terconnects and physical design of the chip. Two ab-
stractions of the global environment are brought down
to the macro level to guide macro-level implementa-
tion:

e shadow. This is a representation of the global
wires overlaying a macro that is used to guide
macro physical design and for macro extraction.

e timing assertions. This is information on the
global timing at macro interfaces — arrival times
with phase tags on inputs, required arrival times
with phase tags on outputs, primary input resis-
tances, and primary output capacitances.

Details of how the design abstractions are created
and used will be discussed in detail in the remainder
of the paper.

3 Logic Verification

Verifying the correct logical functionality of the
microprocessor design, the fundamental goal of the
methodology, involves a tight three-link wverification
chain. A register-transfer level description of the
processor is verified with extensive simulation. This
description is then compared against the circuit imple-
mentation with a formal Boolean comparison method-
ology. The layout is then verified against this circuit
schematic with a layout-versus-schematic (LVS) en-
gine. In this section, we examine the first two links in
this chain.

The G4 microprocessor designed is captured com-
pletely in an RTL VHDL description[2]. The model
is explicitly full-function; that is, it models all of the
logical functioning of the chip including test functions
and contains full and complete scan-chain connections.
In addition to the RTL model of the processor, there
is a high-level microarchitectural model, also captured
in VHDL, which is used for millicode (vertical microc-
ode) verification and a C++ testcase generator, AVP-
GEN, which contains a “golden” behavioral descrip-
tion of the $/390 architecture[3].

In developing the RTL model of the processor,
VHDL is entered for the macros and is done so as
a structurally flat description with the exception of
special latch and array primitives. The use of prim-
itive components for sequential elements avoids er-
rors in the design due to improper latch coding and
facilitates mapping the design to cycle simulation
and “cutting out” latches for Boolean comparisons.
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The entire concurrent VHDL language is allowed.
In addition, process statements that explicitly repre-
sent combinational logic are permitted. The IEEE
std_logic_1164 package is employed and augmented
with an expanded set of logical, relational, and arith-
metic operators. Because the processor is initialized
through scan, initial values for the scan process are
passed to the latch primitives through generics. In ad-
dition, scan chain connections are coded in the VADL
in a manner which allows easy scan-chain reordering
following physical design. The design above the macro
level exists only as a schematic and is netlisted as
structural VHDL for the purpose of logic simulation
and verification.

Four distinct logic simulators were used in the ver-
ification of the RTL model: an event-driven VHDL
simulator, two cycle simulators, and a hardware ac-
celerator. VHDL simulation is used for “design sim-
ulation” on small VHDL models, macros or units. In
the coding style used for the design, no explicit times
are coded in the VHDL, except for the times used
to establish the clock waveforms. All signal- assign-
ments, therefore, occur as a cascade of “delta” delay
events following a clock edge, a clock-edge-triggered
logic specification. For models of any significant size,
including full chip models, cycle simulation is used.
Cycle simulation makes explicit use of clock-edged-
triggered design by identifying certain signals as “reg-
isters” which change state based on their input values
at fixed cycle evaluation times. We build and simulate
models with two types of sequential granularity in cy-
cle simulation — a “two-cycle” model which uses two
cycle-simulation cycles per machine cycle, essentially
allowing independent modelling of master and slave
and allowing simulation of all chip functionality, and
a “one-cycle” model which uses one cycle-simulation
cycle per machine cycle, which enables efficient sim-
ulation of normal system operation of the processor.
For the very largest system models, a hardware accel-
erator is used[4]. The test case environment allows the
designers the flexibility of moving between these sim-
ulator with test case transparency, allowing the use of
the simulator which is best for the specific model and
test case.

The second link in the verification chain is an equiv-
alence checking methodology that ensures that the cir-
cuit implemented in silicon matches the function of
the VHDL description. Because the design is repre-
sented as a-single netlist above the macro level, the
design is correct by construction above this macro
level of hierarchy. Therefore, a necessary and suffi-
cient condition for correspondence is that the macro
circuits compare again the macro VHDL. This is ac-
complished with a formal Boolean comparison of the
circuit and VHDL, augmented with switch-level ver-
ification of latch and array primitives. IBM’s Verity
tool[5], which relies on canonical reduced ordered bi-
nary decision diagram representations[6], is used to
perform the Boolean comparison.

An important new feature of the G4 design method-
ology is the use of Boolean satisfiability constraints,
logical conditions which can be expressed as a func-
tion which must be satisfied. They are used for four



main purposes — to express a “don’t care” state safely
for a VHDL macro architecture, to allow the use of
circuits that require certain logical conditions on their
inputs for correct operation, to eliminate false paths
in static timing, or to reduce pessimism in noise analy-
sis:. Constraints associated with macroinputsandout-
puts are coded in the VHDL as assert statements.
Constraints on inputs are known as asserts, condidi-
tons which we assumie to be true which are verified
either formally (strong asserts) or through simulation
(weak asserts). Constraints on outputs are known as
tests, -conditions that are verified to be true-either
formally (strong tests) or through simulation (weak
tests). In addition, each macro, in general, has an
associated logic constraints view which contains: addi-
tional Boolean satisfiablity constraints for the macro
circuit. - Verity is used globally to verify that every
strong-assertion is accompanied by a satifying strong
test for global signals. Verity also verifies the condi-
tions contained within the logic constraints view.

‘4 Circuit and
methodologies

4.1 Custom macro methodology

We now consider some of the details of the circuit
and physical design of the processor.  The methodol-
ogy follows the two-level paradigm with a macro level
and-a chip-integration level of design: :Macro-level de-
sign consists of custom circuit and.layout approaches
for the dataflow stacks and arrays and the semi-custom
cell-based approach for control logic.

" Custom macro design begins with a VHDL descrip-
tion of the logic function developed in concert with a
transistor-level schematic implementation. Initial cir-
cuit and logic decisions are made with early circuit-
simulation-based timing of critical-path cross sections.
Estimates are also made for the capacitive loading at
the outputs based on early chip floorplan estimates.
An éarly floorplan of each custom macro is also done
to ensure that sufficient area and wiring resources are
available. ‘This early physical design planning forms
the basis for wire capacitance estimates placed in the
schematic. “Layout-dependent” device models are
also used which contain early estimates of source and
drain diffusion capacitances based on predicted layout
style. Once a complete schematic exists, static timing
is used to verify the early cross section selection and
provide a timing abstraction to use in early global tim-
ing. Iterative refinement of the design occurs as tim-
ing assertions: are established based on'global timing.
The final schematics and layout are hierarchical with
no methodology limitation on the amount of hierarchy
which may be used.  The layouts have to conform with
shadow views from the global environment, generated
using either the blockage or contract methodology as
described in Section 4.3.

The arrays in the G4 design are entirely custom de-
signed. The use of self-resetting techniques precludes
use of static timing analysis(7, 8]. Regular structures
in the arrays allow timing verification almost entirely
through cross-section simulation. The timing abstrac-
tions for the arrays are largely hand-generated from

chip-level  design
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this analysis.

4.2 Semicustom macro implementation

For the control logic of the design, stable logic defi-
nition do not ocenr until late in the design process. At
the same time, logic restructuring and retiming offer
the most benefit in optimizing performance. Because
of these factors, a semiautomated schematic and lay-
out generation system is required which preserves the
benefits of transistor-level design.

We rely on BooleDozer, IBM’s logic synthesis tool,
to generate the schematics for our semicustom macros.
The details of IBM’s BooleDozer tool are described
elsewhere[9, 10]. We exploit BooleDozer in innovative
ways to achieve rapid implementation while maintain-
ing the ability to control the logic structure and ag-
gressively tune the design at the device level. These
techniques include:

¢ The use of a continuously-tunable, parameterized
standard cell library with logic functions chosen
for performance.

o Designer controls on restructuring and technology
mapping to this library[9].

e Use of “don’t cares” as defined by VHDL asserts
to simplify logic implementation[11, 12].

o Use of “hill-climbing” based late timing correc-
tion; that is, individual transformation operating
under greedy heuristics are allowed to make tim-
ing worse if a succession. of these transformations
ultimately improves timing, allowing the heuris-
tics to escape from locally optimal timing solu-

- tions

o Use of postplacement retuning and postplacement
optimization of the macro clock distribution and
scan chains.

o Use of tag-based partitioning to create design hi-
erarchy to allow further customization of circuit
and layout.

Traditionally, timing rules for standard-cell designs
have been based on the actual size of the gate. In
addition, each cell was available in-a number of dis-
crete sizes, or “power levels.” The timing tules for the
static CMOS library used in the G4 -microprocessor
design differ from these traditional libraries in several
important ways. First, the rules were continuously
parameterizable; that is, no fixed library cells were
assumed. Second, they were parameterized by quan-
tities directly related to delay, rather than size, which
we refer to as normalized gain and beta. Consider the
static CMOS inverter shown in Figure 1(a) driving a
load capac1tance of couz. Let poy be the gate capaci-
tance per unit width. The normalized gain, g, of the
inverter is given by:

Cout

g (Wp + W)



The 8 is given by:

W
B= A
In addition, we define something called the effective
n-FET width, W2/, which is given by:

W;ff =W,

for the static inverter. In terms of 8 and W://, the
normalized gain is given by:

Cout

T W (11 )

Now consider the 3-input NAND gate shown in Figure
1(b) driving the same load capacitance coy:. Equation
derived above continues to apply. We introduce FET
multiplication factors, my, and m, which are chosen for
a particular book type so that the rising and falling
delays of the gate match the rising and falling delays
of a normalized gain 3 inverter. The rule structure
itself consists of interpolated tables which calculate
delay (d,) and slew (s,) as a function of input slew
(s:), normalized gain (g), and beta (8).

do = f(s‘isg’ﬁ)
8 = f(siagn@)

A parameterized domino library is also being devel-
oped using many of the same ideas.

Figure 1: (a) Device widths for a static inverter in

terms of W*/f and 8. (b) Device widths for a 3-input
static NAND gate.
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Beta and gain parameterization in the timing rules
enable heuristics for delay optimization which can be
applied after an initial placement of the design. It
is only after an initial placement that the intercon-
nect capacitance can be estimated accurately enough
through minimum width Steiner tree routes to enable
detailed retuning. The changes that result from these
postplacement optimization are handled as an “engi-
neering change option” (ECO) to the original place-
ment. In addition to retuning, postplacement op-
timizations done within BooleDozer include reorder-
ing of the scan chains, optimization of the clock dis-
tribution network within the macro, and short-path
padding in the case of early-mode hold violations.

The use of parameterized cells or soft libraries re-
quires development of a tool to generate layouts au-
tomatically as part of the design process. The library
generator for static CMOS concentrates on efficient
design of simple cells (the most complex being a 2x2
AO/OA), and allows customization of the cell image.
The cell generator is used in two ways. It is first used
to create a standard set of sizes which are selected and
shared over the entire chip, in effect, creating a stan-
dard cell library with a large number of sizing options.
This library is used for initial implementation and
placement of all semicustom macros. In some cases,
the cells are made a permanent part of the design hi-
erarchy, matching a non-parameterized representation
in the schematic. The more common approach is to
tune away from the fixed library sizes. In this case,
a cell library is created transiently corresponding to
a user-specified “binning” of the continuously-tuned
schematic. After a placed-and-routed implementation
from the soft library is completed, the layout is sub-
sequently flattened, eliminating all references to the
cell layout design. A parameterized schematic corre-
sponds to this flattened layout. In this way, the orig-
inal soft library schematic and layout become part of
a customized macro implementation.

4.3 Chip integration

Chip integration, the top level of the two-level cir-
cuit and physical design process, consists of floorplan-
ning and global wiring design. Guided by early global
timing, the first step in the chip-level design process
is to floorplan the macros, allocating macro area and
optimizing pin placement. Once the initial floorplan is
created, power and clock are routed. One of the largest
strengths of the G4 on-chip power distribution is the
use of C4 areal power distribution pads as opposed to
wire-bonded peripheral pads. The clock tree design
is a balanced H-tree structure created with a special-
ized maze router that uses wire width as well as length
tuning to achieve skew control of +25ps while simul-
taneously working to reduce latency. After power and
clock routing, the I/Q’s are wired as are other tim-
ing critical buses in the design. Critical bus routing
is done with use of wide wires to minimize RC delays.
Early critical bus routing is also done with considera-
tion of capacitive coupling, which drives wider spacing
between wires or alternate signal and power/ground
routing.

Once the initial floorplan with power, clock, and



prewires is. complete, the rest of the interconnect de-
sign is managed through the use of a hierarchical phys-
ical design process to parallelize the design effort. Two
types of abstractions are used in the process of manag-
ing wiring resources across the macro-chip hierarchical
boundary — shadows which pass wiring information
from the global routes to the macros and abstracts
which pass wiring information from the macros to the
globals.

Two basic methodologles are used to manage w1rmg
resources. In the first, which we refer to as the block-
age method, globalrroutes are completed first with no
blockage restriction from the macro level. Shadows
pass the actual global routes to the macro level of hi-
erarchy. The shadow nets are attributed so that the
macro routes may tap into these where appropriate,
further maximizing wiring utilization.. This approach
is used 1n selective areas of the chip where wiring re-
sources are at'a premium. In the second methodology,
which we refetr to” as the contract method, the wiring
tracks are divided @ priori between the macro and
global levesl of hierarchy and this contract is coded
in both the shadow and-abstract, which are negative
images of each other. Prewires — clock, power, chip
I/0, and critical nets — also appear in the shadow as
blockages This techniques does not create as efficient
a use of wiring channels as the blockage method but
allows the parallelization of the routing process.

Managing global RC delays and ' assuring that
global net drivers are appropriately sized for their
loads are essential parts of the chip integration
process. We use the timing tools to identify global
net receiver slews which exceed a target slew maxi-
mum. For those receivers showing vislations, the slew
at the driver is also examined. The general optimiza—
tion methodology is a three-step process:

1. In the cases in which there'is a slew violation at
the driver, the driver is resized.

2. If the driver is appropriately sized, but the re-
ceiver slew is still poor, then there is excessive
RC delay. The first approach fo fixing this is to
widen the wire, resizing the driver in the process
to the larger capacitive load. ,

3. In cases where slack allows, -a repeater may be
used as an alternative or in addition to wide wires,

5 Electrical and physical verification

© In this -section, we describe the methodologies we
employ for interconnect, timing, power, ‘and noise
analysis. Bach -of ‘these methodologies -is driven by
the need to address deep submicron désign within the
context of a transistor-level focus.

5.1 Interconnect analysis

As with all other aspects of the methodology, ex-
traction and interconnect modelling are divided be-
tween the macro and global with special considera-
tions for the interaction between these levels. The
resistance and capacitance extraction is rule-based,
calibrated by finite element calculations. At the
macro level, we perform two types of extraction, a
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capacitance-only extraction, including coupling capac-
itors, and a resistance and capacitance extraction in
which all floating capacitors are broken and tied to
ground. For the global level, three extractions are
performed. A statistical extraction allows quick inter-
connect estimation for timing assuming a percentage
loading on each wire. Steiner tree estimates are used
for estimating unrouted designs. In addition, thereisa
detailed RC extraction with grounded coupling capac-
itance for timing and ‘a complete coupling-capacitance
extraction for noise analysis.

In general, RC extractions produce tremendous
amounts of resistance and capacitance data. Reduc-
tion techniques are essential to successful analysis of
this data for timing and noise analysis. At the global
level, we employ what we refer to.as a pi model, pole-
restdue macromodel as shown in Figure 2. We model
the interconnect load on each driver as a pi-model,
matching to order s% the mornents of the driving-point
admittance [13] as obtained by asymptotic waveform
evaluation S WE) techniques[14]. In addition, the
model iricludes for each receiver the poles-and residues
of the transfer funct1on of the unit step response for
the driver to the receiver; also obtained through AWE
techniques.

receiver 1

recelver 2

R
¥ driver < ; C

L+ Lo

Figure 2: pi model, pole-residue interconnect macro-
model.

For reducing the interconnect models at the macro
level, the requirement exists to preserve the RC netlist
representation of the data for circuit simulation and
timing analysis. To do this, we preserve the original
topology of the RC extracted netlist, treating each
branch as a two-port network. A frequency-domain
criterion is used .to choose between two- and three-
capacitor reductions by matching the moments of the
two-port admittance.. This initial reduction leaves
many single resistor point-to-point nets which are se-
lectively eliminated based on a time-domain accuracy
requirement.

5.2 Timing analysis

The timing analysis of the G4 design is accom-
plished using static timing analysis techniques, imple-
mented using Pathmill from EPIC Design Technology
and IBM’s Einstimer. As in all key analysis processes
on the G4 design, a hierarchical approach is used.
Macros are individually abstracted from transistor-
level analysis and combined with global interconnect
models in chip-level timing runs.: The" hierarchical
approach allows faster turnaround of full-chip timing



runs, since only those macros which changed since the
last timing run have to be re-abstracted. In addition,
quick analysis of proposed global wiring changes can
be made without detailed analysis at the macro level.

In performing the macro-level timing analysis, in-
dividual channel-connected components are identified.
Delays through these components are generally simu-
lated under assumption that only one input switches
at a time. In lieu of complex metastability analysis,
heuristics are applied to determine setup and hold
times at latches. Both late and early mode tim-
ing analysis is performed. All circuit in late mode
are timed to nominal process, highest predicted on-
chip temperature, and lowest possible on-chip voltage.
Early-mode analysis is performed at a three-sigma fast
process, lowest predicted on-chip temperature, and
highest possible on-chip voltage. Timing abstractions
presented to global timing from macro analysis can be
either black or gray. In the case of the black box, no
internal latch points are defined and setup and hold
tests are presented at primary inputs. These require
independent verification of latch-to-latch paths within
the macro, which are not presented to global timing.
Gray boxes are used for timing verification in the case
of transparatent latches or domino logic. In this case,
internal latch points are defined, and segments and
tests to the internal latch points are included in the
abstraction.

In global timing, the macro abstracts are combined
with the interconnect macromodels. To calculate the
driver waveforms, we employ a variant of the effective
capacitance approach. The actual admittance of the
interconnect is modelled at the driver as a pi model.
The effective capacitance is given by the capacitance
that produces the same total integrated current as the
pi model through the driver through the 50 percent
point of the driver voltage waveform. From this analy-
sis, one finds:

2RC?
t

3

Ceff :Cl+02 — (l_e—t,/2303)
where %, is the slew time. This equation is solved
iteratively with the driver slew characterization.

r = t: + kCload

The global timing runs are used to generate asser-
tions to drive macro-level implementations. These as-
sertions include effective capacitances on the outputs
to indicate global wire loading, primary input resis-
tance assertions to indicate driver strength and global
wire resistive shielding, input arrival times, early and
late mode, rising and falling, and output required ar-
rival times, rising and falling. A “slack apportion-
ment” algorithm is employed during the early phases
of the design process, before timing convergence is
achieved, to apportion negative slack across multiple
macros. Proper assertion management is key to tim-
ing convergence in a hierarchical timing environment.
5.3 Power analysis

Analyzing the power demands of the chip consti-
tutes an important part of the methodology. Associ-
ated with this is the equally important analysis of the
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integrity of power supply and the electromigration re-
liability of the power network. Static algorithms, such
as those applied to timing analysis, rely on simula-
tions at the gate level combined with a graph-based
path search. The fundamental assumption of this ap-
proach is that correct characterization for the analy-
sis in question can be done at the level of individ-
ual channel-connected components. This is, unfortu-
nately, not true for determining the power demands of
digital systems. Several aspects of the problem stub-
bornly defy straightforward static analysis such as the
existence of glitches and incomplete transitions at gate
inputs, the dependence of energy consumption on past
history, and sensitivity of energy demands to the pre-
cise analog nature of waveshapes in the design[15]. As
a result, the approach we take is an essentially two-
level hierarchical analysis methodology,in which large,
flat macro-level simulations are abstracted and com-
bined statically to analysis the energy demands of the
chip and determine the integrity of the power distrib-
ution network.

We perform the macro circuit simulation using the
SPECS (Simulation Program for Electronic Circuits
and Systems) simulator[16]. In SPECS, the simula-
tion is event-driven. 7 — v characteristics are assumed
to be piecewise constant, branch currents are assumed
to be piecewise constant in time, and branch voltage
are assumed to be piecewise linear in time. The clocks
are toggled at system cycle time and patterns are ap-
plied with arrival times relative to the clock as de-
termined from static timing analysis. Output loading
is also obtained from the global timing environment.
Patterns are either designer-chosen to maximize the
power requirements of the circuit or randomly gener-
ated. For smaller macros (< 50,000 transistors) hun-
dred of patterns are analyzed while for larger macros
(50,000 - 200,000 transistors), tens of patterns are sim-
ulated. We define a set of power points, pins within
the power and ground network that separate the “lo-
cal” power distribution from the global ene. These
are typically chosen on the via layer that connects the
first and second level metal. The macro, including the
local power grid up to the power point, is extracted.
Current meters, as shown in Figure 3, are attached
to the power points in the extracted netlist for sim-
ulation. A fundamental assumption of this hierarchi-
cal approach to power analysis is that the global sup-
ply and ground can be assumed to have their nominal
values when calculating the power point currents. In
actuality, macro power demands will result in power
supply noise, which in turn affect the power point cur-
rents, an effect which is ignored in this analysis.

In order to abstract macro power data both tem-
porally and spatially, we monitor the currents at the
power points during simulation. The active edge of
the global clock defines the cycle. Let i2%*(m) be the
peak current on power point n during cycle m and let
12v¢7%9¢(m) be the average current on power point n
over cycle m. We then find the cycle m for which

S e (m)

n
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Figure 3: Power point methodology. The supply and
ground distribution is divided between macro (dark)
and global (light). Power points form the connec-

tion between these two levels of hierarchy. Indepen- |

dent voltage sources that supply nominal supply and
ground voltages to the macro serve as current meters.
Peak and average currents measured at these meters
are subsequently applied to the global power grid to
determine IR drops and delta-I noise.

is maximum and the cycle m’ for which
caverage, /!
> ineress(m)
n

is maximum. We then store the #°**(m) and
z“”"“ge(m’ } values for each power point as a power
view.  Additional temporal resolution is possible by
dividing the cycle up into a number of “time buck-
ets.”

From logic simulation, we' determine a switching
factor f between 0 and 1 for each macro in the design
during “average” and “worst-case™ activity. We define
[ as the average fraction of inputs that change during

a given machine cycle. Figure 4 shows a power map of
the chip for average switching activity, calca.lated by

computing:
Vddf Z ,l:';zlv erage (m/)
n

where the sum is-over all the power points in the power
view for the given macro.

The power abstracts are also-used-to determine the
power supply rioise and evaluate electromigration con-
traints in the power distribution. Both analyses begin
with an extraction of the multilevel power distribu-
tion network from the macro power points to the C4
pads. We first perform a DC analysis of the power dis-
tribution to determine the IR drops in the power and
ground distribution. For this analysis, we use the aver-
age power point current and the “worst-case” switch-
ing factors to apply DC current sources to the global
power and ground grids. The resulting resistive net-
work is solved with a sparse LU factorization package.
IR drop results are calculated for each power point
and branch currents are calculated for each resistor in
the network. The branch currents are cross-references
with the wire widths and via sizes to flag potential
electromigration problems.

238

Central Processor Power Map

#mW <= 100

W100 «mW <= 200 #200<mW <300

%300 <mW <= 400 *mW > 400

Figure 4: Power dissipation map of the G4 processor.

In addition to the variations in the DC power and
ground levels dueto the steady-state current demands
of the chip, there are periodic variations due to simul-
taneous switching of off-chip drivers and internal cir-
cuits.” This delta-I noise occurs when these “pulses”
of current are sourced or sinked through inductance
on the chip and package supply and ground wires. To
analyze the delta-I noise, the power point sources are
applied to the complete RLC extraction of the power
grid combined with a lumped element model of the
MCM. Figure b shows a highly simplified view of this
model for a single power/ground C4 pair. The current
sources at the power points are agsumed to switch as
a spike with a slew time of 100psec rising and falling
and with a magnitude given by the peak current of
the power point. Decoupling capacitors are added to
the equivalent circuit as are estimates of nwell and
nonswitching circuit capacitance.

Pckage On chip

Decoupling
capacitance

Package
decoupling
eapacitance

Figure 5: Equifralent circuit for delta—i calculations.



5.4 Noise analysis

Noise is an important new metric for design, of com-
parable importance to timing, area, and power. In the
G4 processor design, we considered only global cou-
pling noise, while actively working on a more compre-
hensive noise analysis strategy[17]. The coupling noise
analysis uses the capacitance-only coupling extraction
of the global interconnect. We define the victim net
as the static net onto which pulse noise is being cou-
pled by one or more perpetrator nets. Coupling noise is
calculated using the simple linear model shown in Fig-
ure 6. A threshold of coupling capacitance to victim
self-capacitance was used to decide which perpetrator
nets to include in the analysis. Rgriyer is the effective
resistance of the driver. The “resistance” Rj of an
individual FET k is modelled from the linear region
of the I, versus Vg, current-voltage characteristic at
|Vys| = Vaa. Rariver is then given by:

Ririver = Z Ry
k

over the weakest static FET path in the driver. Ry is
the total resistance of the net to the receiver. C ground
is the total capacitance of the victim net which lS tied
to ground. Capacitances C': couple the victim to

each of the perpetrator sources berp which are mod-

elled as saturate ramp waveforms of slew ¢,,... This
network ignores the distributed effects of resistance on
the victim net.

ol 5 Al
Rogiver qroundI) Y noise

Figure 6: Simple circuit model for crosstalk coupling.

Instead, the entire net resistance is put in series
with the driver, a pessimistic simplifying assumption.
In addition, the distributed resistance of the perpe-
trator nets is also ignored. The v,,is.(t) response
produced by the action of a single perpetrator source

Vherp(t) is given by:

where R = Ryt + Rariver. By linearity, the peak noise
Upeak 1S given by:

RCooup Vs
v‘no%se = Z CO‘le dd ( — e"txlew/R(Ccoup"'Cg)

s lew

In addition, we use timing windows to reduce pes-
simism. Arrival windows for the perpetrator net sig-
nals are obtained from static timing analysis and are
defined by early and late-mode propagation at the
same process, temperature, and voltage. We then
solve what we call the optimal conirol problem for
the arrival times of the perpetrator net driver wave-
forms. We seek to find the arrival times for the voltage
waveforms of the perpetrator net drivers which meet
the arrival time constraints and which maximize the
peak noise response on each victim net receiver. Some
proactive attempts to avoid coupling problems were
made on global routes with constraint-driven routing
techniques[18]

6 Summary

We have reviewed some of the methodology consid-
erations that went into the design of the G4 $/390
microprocessor. Several important themes thread
through our approach which directly led to the suc-
cess of the design. Cycle simulation is an essential ele-
ment of logic verification given the size and complexity
of designs and the need for high-performance simula-
tion. The methodology must also be fundamentally
transistor-level to allow detailed circuit tradeoffs be-
tween timing, power, and noise. Interconnect must be
designed and analyzed with comparable importance
to devices. Static techniques must be employed wher-
ever posmble, for example, in timing and noise analysis
and in Boolean equivalence checking. Managing com-
plexity inevitably involves the use of hierarchy and
abstraction which must be handled strictly and con-
sistently.
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