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Abstract—Multiplexing is an important strategy in multichan-
nel acquisition systems. The per-channel antialiasing filters needed
in the traditional multiplexing architecture limit its scalability for
applications requiring high channel density, high channel count,
and low noise. A particularly challenging example is multielec-
trode arrays for recording from neural systems. We show that con-
ventional approaches must tradeoff recording density and noise
performance, at a scale far from the ideal goal of one-to-one map-
ping between neurons and sensors. We present a multiplexing ar-
chitecture without per-channel antialiasing filters. The sparsely
sampled data are recovered through a compressed sensing strat-
egy, involving statistical reconstruction and removal of the un-
dersampled thermal noise. In doing so, we replace large analog
components with digital signal processing blocks, which are much
more amenable to scaled CMOS implementation. The resulting
statistically reconstructed multiplexing architecture recovers in-
put signals at significantly improved signal-to-noise ratios when
compared to conventional multiplexing with antialiasing filters at
the same per-channel area. We implement the new architecture
in a 65 536-channel neural recording system and show that it is
able to recover signals with performance comparable to conven-
tional high-performance, single-channel systems, despite a more
than four-orders-of-magnitude increase in channel density.

Index Terms—Electrophysiology, interpolation, multielectrode
array, multiplexing, sampling.

I. INTRODUCTION

N TODAY’S big-data systems there are often needs to ac-

quire information from a large number of signal sources
within a short period of time. Useful information embedded
within these signals are extracted (for example, by band-pass
filtering), sampled, and digitized for later retrieval and analy-
ses. Multielectrode electrophysiological recording tools [1] in
neuroscience are an important example of such a system, con-
taining an array of electrodes for capturing signals emitted by
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neurons in brain circuits. In most situations there are orders of
magnitude more neurons than electrodes. For instance, there
are more than 1 million neurons in the human retina [2], the
light-sensing neural tissue at the back of each eye; and there
are more than 250 million neurons in the primary visual cortex
[3], the brain region devoted to visual processing. In contrast,
electrophysiological tools in routine use today contain at most
a few hundred electrodes (e.g. [4], [5]); each at best is able to
reliably pick up signals from a handful of nearby neurons — on
the scale of <40 pm [6]. There is, therefore, a desire to increase
electrode count, to record from as many neurons as practically
possible.

The implementations of these electronic systems are con-
strained by many factors. For electrophysiology these include:
space limitation, heat emission, power budget, sensor-to-signal-
source proximity and invasiveness to the biological specimen.
Consequently, multiplexing is fundamental to most neural sig-
nal acquisition systems (e.g. [7]-[10]). This allows numerous
front-end recording pathways, including the electrodes, to share
a single back-end. The signals picked up by each electrode are
typically very small. Depending on the recording modality, the
signal peak-to-peak amplitude is on the order of 10 s of mi-
crovolts. Amplification with low noise amplifiers, close to the
source, is crucial for preserving signal integrity. These circuits
add additional burden on the system design constraints.

We start by outlining the traditional architecture for multi-
plexed data acquisition, with particular emphasis on its scal-
ability limitations for high-channel-count (greater than a few
hundred) applications in Section II. As an approach to tackle
this major obstacle, we present a new multiplexed, sampling
architecture tailored for ultra-high-channel-count scale up in
CMOS-based technologies, referred to as the statistically re-
constructed multiplexing architecture (SRMA), in Sections III
and I'V. In Section V, we then demonstrate an implementation of
this architecture in a 65,536-channel neural recording system,
followed by concluding remarks in Section VI.

II. THE TRADITIONAL APPROACH

In general, we can represent multiplexed signal acquisition
systems as shown in Fig. 1(a). The inputs are M continuous-
time signals f;(¢), i € {0... M — 1}. These signals are first
amplified by a preamplifier in each channel. The analog signal
for channel ¢ at time ¢ is sampled by the sample-and-hold
(SH), amplified further, then digitized by an analog-to-digital
converter (ADC) operating at sampling frequency > 2M f,,,
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Fig. 1. Conventional multiplexing architecture. (a) Multiplexing with a

sample-and-hold element (SH) within each channel requires a low-pass an-
tialiasing filter (LPF) per channel. MUX, multiplexer. ADC, analog-to-digital
converter. (b) Conventional multiplexing is equivalent to time division multi-
plexing (TDM).

where f,,, is the bandwidth of each input. To prevent aliasing ar-
tifacts, each channel must have a low-pass filter (LPF) preceding
the SH, with corner frequency f;,. The toggling of the SH,
multiplexing (MUX) addressing, and ADC clock are appro-
priately timed, such that the input to the ADC is sufficiently
stabilized for quantization. The ADC output x[n] then contains
a sequence of digitized data, organized by MUX addressing and
time, in this order. Fig. 1(b) shows how these systems can also
be viewed as independent signals time-division multiplexed
through a common communication channel (i.e. back-end
amplifier and ADC), by means of synchronized switches (i.e.
SH toggles, MUX address updates and ADC clocking).

The conventional architecture of Fig. 1(a), however, is ill-
suited for form-factor-constrained scale-up to thousands of
recording channels due to the size of the required antialiasing
low-pass filters at the beginning of each signal path. In the sim-
plest form, these filters are first-order networks with a low-pass
corner frequency of

_ 1
" 27RC

The frequency of neural signals typically spans dc to approx-
imately 3 kHz, depending on the measurement technique and
biological processes under investigation. To realize such a cor-
ner frequency, either a large capacitor or a high-valued resistor is
needed (Fig. 2(a)). High-resistance pseudo-resistors can be con-
structed from MOSFETS operating in weak inversion; therefore
achieving high R is generally not a problem for applications with
small-amplitude inputs. However, input-impedance and thermal
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Fig. 2. Low-pass antialiasing filter for conventional multiplexing. (a) Scaling
of capacitance and resistance for a 1-pole 10 kHz low-pass filter. (b) Filter noise
and area requirements of metal-insulator-metal (MiM) capacitors in typical
CMOS microelectronics. “Noise limit” denotes the noise level that should not
be exceeded for extracellular electrophysiological recordings.

noise considerations favor capacitance over resistance. First, a
large resistor in series with the source also forms a voltage
divider between the signal and the input amplifier, attenuating
weak signals and compromising SNR. Second, the thermal noise
of this RC network is described as a mean-squared voltage of

v M

notse C

where k is the Boltzmann constant and 7" the temperature in
Kelvin. To sense signals of a few 10 s of 1V peak-to-peak, the
network’s noise should be no greater than approximately 10 'V
rms over the dc to 10 kHz bandwidth. This requires a capacitor
in the range of 40 pF at 35 °C (Fig. 2(b)).

High density capacitors in today’s commercial microelec-
tronic processes provide approximately 4 fF/um? [11], using
metal-insulator-metal (MiM) capacitors. Capacitors equal to, or
greater than, 40 pF would require >10,000 zm?. To put this on
the biological scale, the soma (the neuronal cell body, where
recordings are usually made), has typical diameter <25 pym. A
MiM capacitor with adequate noise performance would occupy
an area 20 times greater than the neuron from which it senses,
a severe limitation on the goal of achieving high-density, high-
channel-count recordings in the central nervous system [12].

Additional circuit elements further complicate efforts to
increase channel density. In many applications it is desirable
to AC couple the biological preparation from the recording
circuits, such that neurons are not exposed to the amplifiers’
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Fig. 3.

Overview of the statistically reconstructed multiplexing architecture (SRMA). The input signal f; (¢) from all channels are treated as continuous-time up

to the ADC, obviating the need for per-channel antialiasing filters. Extracting the per-channel data from the ADC output causes under-sampling of thermal noise.
The spectral contributions of this under-sampled noise are computed and removed from the channel data, in the frequency space, producing aliasing-free outputs.

transistor biasing voltage. This high-pass filter needs a 3-dB
corner frequency as low as a few Hz, requiring an additional
large capacitor at the beginning of the signal pathway. Finally,
noise considerations, in particular 1/f noise, limits minimum
transistor sizes [13].

Existing implementations of neural recording systems have,
therefore, been limited to low-noise (<5 'V rms in passband),
but low-density arrays (approximately 126 simultaneously-
recording channels per mm?) [14], [15] or high-density (approx-
imately 4225 simultaneously-recording channels permm?), but
high-noise (20 to > 100 pV rms) arrays [7], [8], [10].

III. A SCALABLE MULTIPLEXING ARCHITECTURE

We present a new multiplexed data acquisition architecture
that enables high-density, high-channel-count scale up without
incurring the noise-to-density trade-offs of traditional multi-
plexing approaches. The statistically reconstructed multiplexing
architecture (SRMA) is illustrated in Fig. 3.

A. Overview of the Architecture

The acquisition process begins by amplifying each signal at
the input. A MUX is used to direct several first-level amplifiers
to a second, shared amplifier. The output of the MUX, therefore,
consists of continuous-time segments of the channels that have
been selected. In the traditional approach to such multiplexing
(Fig. 1), the sampling operation is placed within each channel,
prior to the multiplexer. This necessitates a LPF prior to the SH.
As noted previously, space and noise considerations for these
analog filters limit system scalability.

Our approach, in contrast, treats all inputs f; (¢) as continuous-
time analog signals up to the ADC, where they are sampled and
digitized. An antialiasing filter placed before the ADC rejects
signals above half the ADC’s sampling rate. The digital signal
processing of this data stream begins by extracting the per-
channel data from the ADC’s data stream. As we will describe
later in detail, this operation, in conjunction with the lack of

per-channel antialiasing filter, causes the channel data to be sam-
pled at a rate substantially lower than the systems’ bandwidth.
Unless reconstructed and removed from the per-channel data,
frequencies between half the per-channel visit rate, by the multi-
plexer, and the system’s bandwidth would be aliased. To prevent
this aliasing, we use a compressed sensing strategy to reconstruct
and remove the spectral contributions of these under-sampled
frequencies from the per-channel data. This is made possible
through careful choices of the key system components’ operat-
ing frequencies (Fig. 3); in particular, f,;s;; (visit rate for a par-
ticular channel by the MUX), f1 pr (ADC antialiasing low-pass
frequency), fsamp (ADC sampling rate) and [y (signal chain
bandwidth). We now consider each of these steps in more detail.

B. Signal Multiplexing

When a particular channel m is selected by the MUX, the
output h(t) changes continuously according to the pre-amplified
Jm (t). Formally, we can view the MUX as mapping continuous
time 7" and channel address A to continuous signal S, which is
the voltage at the input channel:

h:(T,A)—-S, TeR,Ac{l...M —1}andS € R

Importantly, the MUX output is defined for all time ¢ € R. The
parameter A represents the selection address, determined from
theset {0... M — 1} C N, where M is the number of channels
in the system.

It is instructive to contrast the inputs g, and output h of the
MUX to those of a sample-and-hold element. In the latter, the
input a is a mapping from continuous-time 7’ to signal S, but
the output b maps from discrete-time 7 to signal S. That is, the
output is a sequence of Dirac impulses drawn from the input

a:T—S TeRandS eR
b:T— S TeNandS R

If we operate an ideal (zero delay and infinite bandwidth)
MUX such that the per-channel dwell time is 6 and we
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Fig. 4. Extracting channel data from the ADC’s output stream. (a) Multiplexing of the analog signals. (b) Periodic sampling of inputs. (c) Extracting per-channel
samples.

repeatedly cycle through all inputs sequentially, the output of
the analog multiplexer h(¢) will be concatenated segments of
the continuous signals from the scanned, post-amplified inputs
gi(t), i €{0,...,M —1}. Each segment is offset in time
with duration dz, € N*, with N* denoting the set of natural
numbers greater than 0. This is illustrated in Fig. 4(a).

For simplicity we have assumed an ordered cycling set C' of
channels from lowest to highest address C={0, 1,..., M — 1},
with equal per-channel dwell time d. In general, this need not be
the case. For example, the scanning sequence can be limited to
just the subset of inputs with interesting signals. Furthermore,
one or more of the inputs could be scanned multiple times
per cycle, if the associated channels contain signal of higher
bandwidth than the rest.

C. Digitization

The continuous-time signal h(t) from the MUX is amplified
and sampled by the ADC at frequency fsqmp. A pre-ADC low-
pass filter prevents aliasing of contents above half the sampling
rate; therefore, it has corner frequency frLpr = fsamp/2.

It is required that fsamp > n.f’ui,sih ne N*’ where f’visit is
the per-channel visitrate by the MUX. This has two effects. First,
it ensures at least one conversion by the ADC per MUX address
change. Second, this guarantees that MUX address changes are
in phase with the ADC conversion, because f;q,, is divisi-
ble by f,;si¢. It is further required that the phase differences,
if any, between the MUX address lines and the ADC clock
be kept constant to minimize timing jitters in the ADC’s data
conversion aperture time t,,;. It should also be apparent that
tapt < 1/fsamp~

The ADC’s output 2:[t] consists of discrete, time-indexed sam-
ples from //(t), the antialias-filtered version of h(t). Changing
the multiplexer address while sampling causes the ADC output
x[t] to contain samples from all scanned channels, ordered by
the multiplexer’s addressing history (Fig. 4(b)).

D. Extracting Single-Channel Data

At some arbitrary time ¢’ (Fig. 4(b)), if we have been keeping
a history of the MUX switch positions and the dwell time ¢ at
each position, we can recover data segments for each scanned
input from the ADC’s output. Given a particular channel m, the

canonical ADC output x[t] is processed through an extractor
Ext (Fig. 3) to produce a new sequence y,, [t], which is defined
asy: N — R

Ym [t] = x[t] ‘Addm/ vx (t)=m

For example, when the MUX is cycled through the address

sequence {0, 1,..., M — 1}, y,, [t] would consists of sampled
data from z[t] whenever the MUX is switched to channel m
(Fig. 4(c)).

The channel-data extraction procedure F2xt creates an out-
put with sampling rate f,;i, where fuisir < fsamp When the
number of scanned channels M is > 1. This reduced sampling
rate, fyisit, relative to the ADC rate of fy,,,, creates two con-
siderations. First, we need to ensure that f,;s;; is sufficient to
describe the signal of interest. Second, due to the lack of per-
channel, anti-aliasing filters and the large number of channels
visited by the MUX in high-channel-count implementations,
fuisit/2 will be, in general, significantly smaller than the band-
width fpy of each recording channel. Specifically, we expect
fisit/2 < few < fsamp/2. Under such a condition, the con-
tent spanning f,;s;¢1/2 to fpw would be under-sampled, thus
aliased into the range dc to fy;s /2.

E. Preserving Signal Bandwidth

We begin by examining the first consideration, that of preserv-
ing the signal of interest in the extracted, per-channel data y,, [t],
for channel m. In general, we can express the input of a data
acquisition system as f(t) = s(t) + n(t), where s(t) represents
the signal of interest and n(¢) denotes the input-referred noise.
If s(t) is bandlimited to the frequency range (wy ...wp + w),
the function is completely determined by its values at a set of
points with density 2w [16], [17]. Hence knowing the bandwidth
of our signal s(t), we can choose the MUX per-channel visit
rate and the ADC sampling frequency appropriately, so that s(t)
is completely described by the extracted channel data y,, [t].

Specifically, when multiplexing n channels of a M -channel
system, with n < M, the following conditions must be met
to ensure sufficient sampling rate for each signal of interest
sy (t),xe{l...M—1}:

1) The MUX per-channel visit rate, f,;s;¢, must be set to

0 < nfyisit < fsamp, such that the ADC captures at least
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Fig. 5. Spectral range of signal and noise types in electrophysiology.

one complete sample from a channel per conversion period
1/ fsamp for the set of n non-zero input channels.

2) The ADC sampling rate, fsqmp, must be set to >2nw,
such that the ADC is able to capture the bandwidth of n
input channels, each having a signal of interest s, (¢) with
bandwidth w.

F. Constructing Thermal Noise

We now examine the second consideration: under-sampling
of the system’s bandwidth by the extracted data stream y,, [t],
for channel m. The channel input f,, (¢) contains neural signal
and input-referred noise, as noted previously. The neural signal
is completely described by the extractor output y,, [t], which has
sampling rate f,;s;;, With fi,;5;¢ > 2w by virtue of the require-
ments specified in the previous section. There are two dominant
noise types in electrophysiology, 1/f noise and thermal noise.
The typical spectral range of the signal and noise types are
illustrated in Fig. 5.

1/f noise arises from the transistors. It is particularly promi-
nent in systems with high recording density, where small tran-
sistors are used. It is a non-stationary process. The power of this
noise decreases with increasing frequency, with a typical corner
of a few kHz in CMOS transistors [13]. To properly capture 1/f
noise, it is required that f,;;; /2 be greater than the system’s 1/f
noise corner.

Thermal noise arises from the recording electrodes and the
electronics. It has uniform spectral power and its bandwidth is
limited by the recording system’s bandwidth fpy . Because the
half-Nyquist rate of y,,, [t], fisit /2, 1is less than fy , we need to
remove the spectral contribution of the under-sampled thermal
noise spanning f,;sit/2 to fpw in yn, [t], to prevent aliasing.
This is achieved through a compressed sensing strategy [18],
where, if one has specific a priori knowledge about a signal, it
is possible to recover the signal with fewer samples than required
by classical Nyquist-Shannon sampling theorem.

Several statistical and spectral characteristics of thermal noise
make it possible to reconstruct the effects of aliasing this noise
type. Itis a stationary random process, with a flat spectrum and a
Gaussian time-domain amplitude distribution [19] of zero mean
and variance 2. The probability density function for such a
process is

N(z|o?) = SRR

Signal
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Fig. 6. Removing aliased thermal noise. (a) Sampling at a rate of f, ;s in a
system with bandwidth fpy causes aliasing of contents between f ;i /2 and
fBw . spanning Nyquist zones 2 to n, into the first Nyquist zone. (b) SRMA
minimizes the effects of aliasing by calculating the power of these aliased
contents in Nyquist zones >1, then removing them from zone 1.

We can easily determine every channel’s o2, for thermal noise

calculation by recording each channel without multiplexer inter-
ruption (i.e. conventional sampling) at full system bandwidth,
thereby completely specifying the channel’s thermal noise char-
acteristics up to fpyy .

With the thermal noise variance o2, and bandwidth fpy
known for every recording channel, we computationally con-
struct the thermal noise n,, [t] of each multiplexed channel,
using the operator Constr (Fig. 3).

G. Removing the Spectral Contribution of Under-Sampled
Thermal Noise

Aliasing confers several averaging properties, which greatly
simplify the reconstruction, and ultimately the removal, of
aliased thermal noise.

First, the power of thermal noise (of infinite length) is uniform
across frequencies. Any departure from this ideal, due to the
acquired signal’s finite length, is averaged out by aliasing, as the
contents are folded down into the first Nyquist zone (Fig. 6(a)).
Therefore, we can estimate the power contributed by thermal
noise aliasing in the under-sampled data, by computing and
using the average thermal noise power.

Second, the Fourier space vector angles for thermal noise
(of infinite length) has a uniform distribution with zero mean.
Again, any departure from this ideal in finite-length signals is
averaged out by aliasing, when the contents are folded down into
the first Nyquist zone (Fig. 6(a)), causing the angles to converge
to zero.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Taking advantage of these properties, we can construct vec-
tors in the frequency space to represent the aliased thermal
noise, subtracting these from the aliased data, thereby reversing
the effects of aliasing.

The effects of thermal noise aliasing, between f,;s;+/2 and
fpw can be readily reproduced by decimating the constructed
thermal noise n,, [t], for channel m, to a lower rate, fy;sis
(Fig. 6(a)). We denote this aliased sequence a, :

a,, : decimate(n,,, fuisit)

Next we construct another sequence b,, , a decimated version
of n,, [t] without aliasing. This is accomplished by first low-pass
filtering n,, [t] at fy,isi1 /2, followed by decimation to the new
rate fvisit:

by, : decimate(lowpass(nm , fvisit /2)7 fuisit)

The power contributed by the aliased thermal noise at each
frequency, for a system with bandwidth fpy, but sampled at
only f,isit, 18, therefore, the difference between the deliberately
aliased sequence a,, and the anti-aliased sequence b,, :

Pm = |*7:(am)| - ‘]:(bm)‘

where F denotes Fourier transform.

Because thermal noise is a stochastic process, there will be
slight power fluctuations from frequency to frequency for any
finite-length segment, and no two finite-length segments n,,
are exactly identical. These uncertainties are minimized with
increased length for n,,, and by computing p,, from the aver-
aged power, which converges to the true value as the number of
analysed frequencies increases:

Py, = mean(|F(am)|) — mean(|F (b))

We avoid aliasing by removing the contribution of p/, , at each
frequency, in the per-channel data (Fig. 6(b)). This is achieved
by building a set of vectors describing the aliased contents in
the frequency domain:

f/’m =/ el xarg(F(ym))
m
We then remove these aliased contents V,, from the per-
channel data y,, in the frequency domain. In doing so, we re-
cover the data o,, with the effects of aliasing minimized:

Om :fil(f(ym) _Vm)

As a final remark, here we consider how our acquisition
methodology relates to compressed sensing.

To recover the signal of interest from the under-sampled (be-
low Nyquist rate) data stream, compressed sensing typically
relies on random sampling followed by an optimization-based
reconstruction. The latter is an iterative procedure, which gen-
erally takes considerable processing time. This is particularly
problematic for at-scale electrophysiology, involving thousands
of recording channels or more. Taking advantage of the spectral
characteristics of thermal noise aliasing, we can instead com-
pute and remove the aliased thermal noise from the per-channel
data in constant time, thereby recovering the signal despite sub-
Nyquist-rate sampling - the hallmark of compressed sensing.
Furthermore, compressed sensing relies on incoherent (random)
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measurements to spread the spectral power of the under-sampled
(aliased) contents evenly across frequencies. This is notionally
similar to our acquisition strategy, where we took advantage of
the averaging properties of thermal noise aliasing in the fre-
quency domain.

IV. PERFORMANCE EVALUATION
A. Testing Strategy

To quantify the performance of SRMA, it is imperative that
we know the exact signal and noise entering the system, such that
we may compare outputs against ground truth. These conditions
can only be realized computationally, as shown in Fig. 7(a).

First, a sine wave s[t] with frequency w is generated at a rate
of foamp, With fsam, > w. We get A[t] by down-sampling s[t]
0 fesamp, With 2w < fesamp < fsamp. Because s[t] is down-
sampled to a new frequency above its Nyquist rate, A[t] is effec-
tively the outcome of a perfect sampling system.

Simulating thermal noise generated by electrodes immersed
in physiological media [20], [21], we add to s[t] a bandlimited
Gaussian noise n[t]. This noise is limited to the bandwidth of
the system under test (fsqmp/2), to emulate finite bandwidth
of real acquisition systems. We tested two types of multiplexed
sampling systems: SRMA — our new architecture (Fig. 3), and
convM — the conventional multiplexed sampling system (Fig. 1).
Their outputs are «ft] and [[t], respectively. The convM block
takes an additional noise source m/[t], to account for the an-
tialiasing RC network noise (Fig. 2), due to limited space for
a large-value capacitor in high-density, high-channel-count im-
plementations.

The test signal s[t] is a 1 kHz sine wave (w = 1 kHz). All
three outputs, a[t], 5[t] and A[t], have identical rate, f,sqmp. We
used fsqmp =5 MHz and f50mp, = 10 kHz, to emulate 500:1
multiplexing. Accounting for the per-channel antialiasing filter
in convM, we low-pass filter its input (s[t] + n[t]) at 3 kHz. This
is above 2w and below fesqm /2. For fair comparisons between
convM and SRMA, we also low-pass filter the output of SRMA
at 3 kHz, so that both «[t] and [3[t] are band-limited to 3 kHz.

We now define the variance for the signal s[t], the thermal
noise n[t] and the filter noise m|t]. Recalling that signal-to-noise
ratio (SNR) can be expressed in terms of amplitude variance
(0?) for zero-mean time series: SNR = Ugiqnal/crfwise, with
the variance of n[t] at unity, we set the variance of st] to 15,
for a recording SNR of 15. Using a MiM density of 4 fF /um?
(Fig. 2), and a layout area of 25 um by 25 pm, to record from
neurons with approximately 25 pm diameter, we would achieve
a capacitance of 2.5 pF. A low-pass RC filter with this capaci-
tance has rms noise

KT [1.38¢-23 x 31
Vo =\ = —3862 5p; 310 414 4V rms

Typical extracellular microelectrodes in physiological media,
such as the cerebrospinal fluid, have thermal noise of approx-
imately 10 4V rms. We can therefore write the filter noise
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Fig. 7. Testing the SRMA architecture. (a) Test setup for comparing SRMA
against a perfect sampler and conventional multiplexing with limited space
for RC filter capacitance (convM). (b) Representative signal (s[t]) and noise
contaminated signal (s[t] + n[t]). (c) Power spectral density of signal before
and after removal of aliased thermal noise by SRMA. (d) Output of the perfect
sampler (1), SRMA («) and conventional multiplexing (53).
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For the purpose of comparing multiplexer performance, the
SRMA and convM blocks are noiseless in Fig. 7(a), such that
o2, and o2 together account for all the noise in the test setup.

B. SRMA Outperforms Conventional Multiplexing

Fig. 7(b) illustrates a noise-contaminated input s[t] + n[t] for
SRMA and conventional multiplexing with a small-capacitance
RC filter (convM). The true signal s[t] is also plotted for com-
parison. Fig. 7(c) shows the power spectral density estimate
for SRMA’s extracted per-channel data (blue, corresponding
to y,, [t] in Fig. 3) and its final output (orange, corresponding
to oy, [t] in Fig. 3). Due to the 500-fold reduction in sampling
rate, thermal noise is aliased in the per-channel data. As desired,
SRMA uniformly remove the power of the aliased thermal noise
across the entire output bandwidth of f,s4.,,/2 = 5 kHz.

Fig. 7(d) compares the output of SRMA and convM to the per-
fect sampler’s output A[t], given the same noise-contaminated
input in Fig. 7(b). The SRMA output closely resembles A[t].
In contrast, the output of the conventional multiplexing scheme
with small-capacitance RC deviates significantly from A[t], due
to the additional noise contributed by the RC network. Finally,
by virtue of the SRMA operational procedures, its output is sta-
tistically and spectrally indistinguishable from that of the perfect
sampler as the data length approaches infinity.

We can quantify each multiplexing scheme’s error magnitude
over a closed range of sample points (a . ..b) by comparing its
output sum-of-squares error (SSE) against A[t], normalize by
the range length L = (b—a + 1)

1 b
SSE/L: ¢ ;(x[t] — A[t])?

We generated 30 sets of s[t] + n[t] and tested them on convM
and SRMA. In every case SRMA performed much better than
convM (Fig. 8; Paired t-test, p < 0.0001). The length-normalized
sum of squares errors (SSE/L) of SRMA were significantly
lower than those of convM for all tested datasets (Fig. 8), indi-
cating that SRMA’s outputs are much closer to that of the perfect
sampler than convM.

C. SRMA is Highly Robust in the Presence of Noise

SRMA operates well in poor SNR conditions. As an exam-
ple, the test data s[t] + n[t] in Fig. 9(a) has a SNR of 2. SRMA
produced an output closely matching that of the perfect sampler
(Fig. 9(b)). In contrast, the capacitance-limited conventional
scheme, convM, failed to produce useful output, due to the ad-
ditional noise contributed by the small-capacitance RC network.
To examine how well SRMA operates at different noise levels,
we generated test data across a range of SNRs and compared the
length-normalized SSE of SRMA and convM (Fig. 9(c)). SRMA
consistently out-performed convM. This was statistically
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Fig. 8. Deviation (length-normalized sum of squares error; SSE/L) from per-
fect sampling for conventional multiplexing with limited RC filter capacitance
(convM) and SRMA. SRMA performed significantly better than convM. The
symbol ‘*’ denotes statistical significance.

analyzed by two-way ANOVA (analysis of variance; [22]). The
difference between SRMA and convM was highly significant,
with a p-value of <0.0001.

V. SYSTEM IMPLEMENTATION

We implemented the SRMA architecture in a 65,536-channel,
multiplexed, electrophysiology system (Fig. 10(a)). It consists
of acustom CMOS IC fabricatedina 1.8 V/3.3 V CMOS process
(Fig. 10(b)). The IC has an array of 256 by 256 front-end sen-
sors, each occupying 25.5 x 25.5 um?. The tight pitch gives us
the ability to achieve one-to-one mapping between sensors and
neurons. In-house post-processing [23] of the ICs allows us to
interface them directly with neurons. In particular, we deposited
6 nm of HfOs, a high-K dielectric, on top of each electrode. This
provides a capacitance of 5.8 pF over each 14 ym x 14 pmelec-
trode. A pseudo-resistor, constructed from a p-type MOSFET
operating in weak inversion and placed in parallel with the fore-
going capacitor, forms a high-pass filter for the input signal.
The corner frequency is user-configurable, by setting the gate
voltage of the pseudo-resistor.

Every front-end sensor contains an amplifier, microstimula-
tor, control logic and a multiplexer switch (Fig. 10(c)). The array
is partitioned into 16 banks, with 4096 front-end elements each.
These front-ends are multiplexed into a shared back-end cir-
cuit within the IC, containing a band-pass filter and additional
amplifiers. The last amplifier in the back-end (Fig. 10(e)) has
user-selectable gain, ranging from 1 X to 5Xx, to cater for input
amplitude variations between different biological specimen.

The full-differential output from each IC back-end circuit is
connected to a digitization circuit implemented on the PCB us-
ing discrete components (Fig. 10(f)). This board-level circuit is
comprised of a Sallen-Key band-pass filter, a 12-bit ADC, digi-
tal buffers for the ADC outputs and a Xilinx Spartan-6 FPGA.
Each FPGA handles the outputs from four ADCs and transmits
the data to the host PC via USB3. The SRMA digital signal pro-
cessing steps are implemented on the PC in C++. Each SRMA
instance handles data from one of the sixteen banks in the IC
array.
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Fig. 9. Performance of SRMA with low-SNR inputs. (a) Test data with SNR
of 2. (b) The SRMA output closely matched that of a perfect sampler (1),
while conventional multiplexing with limited RC filter capacitance (convM)
performed poorly. (c) SRMA outperformed convM for all test data, across all
SNR values. We repeated the test with sixteen different inputs at each SNR.

Fig. 11(a) and (b) show the normalized bandwidth of the IC
front-end and back-end circuits, respectively. These values were
determined by applying sine waves, of different frequencies, at
test points built into the IC, while recording the applied signals
using the system’s hardware and software. The power spectral
density for the input-referred noise, when measured in physi-
ological saline and after SRMA processing, is approximately
10 ©V rms over the 100-3 kHz bandwidth (Fig. 11(c)). The en-
tire system uses about 24.7 W during operation (6 V supply). The
power consumption is dominated by the four Xilinx Spartan-6
FPGAs, and to a lesser extent, the board-level Sallen-Key filters.
The IC consumes less than 0.61 % of the power budget.

We next tested SRMA-based recordings in this system by
applying a 1 kHz sine wave, through a pair of silver-silver
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Fig. 10. SRMA implementation on a 65,536-channel, multiplexed, electro-
physiology system. (a) Photo of the complete system, consisting of circuit
board and (b) custom integrated circuit. (c) Layout of the front-end sensors.
(d) Overview of the system. The 65,536 front-end channels are divided into 16
banks, each handled by a separate back-end, implemented within the IC and
with board-level discrete components. (¢) Overview of the IC recording circuit.
BPF, band-pass filter. (f) Overview of the PCB digitization circuit.

chloride electrodes, into the chamber above the recording array,
as depicted in Fig. 11(d). The chamber was filled with conduc-
tive physiological phosphate buffered saline, to mimic condi-
tions similar to those in biological experiments. We reduced the
sine wave to typical electrophysiological signal amplitude of
100 1V using attenuators, op-amp buffers and isolation trans-
formers.

The SRMA readout for one of the electrodes is shown in
Fig. 11(e) (blue trace). Patch clamp recordings have been
the gold-standard in electrophysiology [25], [26]. This non-
multiplexed, low-noise recording technique is carried out with a
commercial, purpose-built amplifier (Molecular Devices Multi-
Clamp 700B). To verify the SRMA output, we performed patch
clamp recordings within 50 ym above the custom IC front-end
electrode from which SRMA acquired the test signal (Fig. 11(e),
red trace). One notices the close correspondence between the
SRMA output and the patch clamp recording.

A number of at-scale, CMOS-based recording arrays, with
thousands to tens-of-thousands of recording electrodes have
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Fig. 11.  Characterizing the IC and SRMA. (a) Normalized bandwidth of the
front-end circuit (65,536 elements). (b) Normalized bandwidth of the back-end
circuit (16 elements). (c) Power spectral density of input-referred noise for
one channel. (d) Setup for comparison to patch clamp recordings. (e) Example
outputs from SRMA and patch clamp recording. Both traces have been band-
pass filtered between 300 and 3 k Hz for clarity.
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TABLE I
SUMMARY OF AT-SCALE, CMOS-BASED RECORDING ARRAYS

IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS

[7] [8] [14] [24] [10] [15] This work

Process (um) 0.5 0.35 0.6 0.6 0.18 0.35 0.18
Voltage (V) 5 33 3.3/5 5 1.8/3.3 33 1.8/3.3
Sensing area (mm?) 2.6 7.13 3.5 73.73 1.08/4.33 8.09 42.61
Electrodes 32,768 4,096 11,016 81,920 4,225 26,400 65,536
Pitch (pzm) 8.775 42 17.8 30 16/32 17.5 25.5
Parallel recordings 32,768 4,096 126 1,024 4,225 1,024 65,536
Noise (1£V rms) >50 26 2.4 (1-10 kHz) 5 >44 (300-10 kHz) 2.4 (300-10kHz) 10 (100-10 kHz)
IC Power (mW) 4,000 132 135 175 - 75 153
Stimulation No No Tes No Yes Yes Yes

been reported to date. Their key performance metrics are sum-
marized in Table I. In several designs, the number of simulta-
neously recording channels is a small fraction of the available
electrodes. Furthermore, it has not been previously possible to
achieve better than 26 ¢V rms input-referred noise over the
spike bandwidth with arrays having more than approximately
four thousand simultaneously recording channels.

VI. CONCLUSION

In this paper we show that traditional multiplexing approaches
are not scalable for high-density, high-channel-count electro-
physiology. As the per-channel antialiasing filters are made
smaller, the thermal noise of these circuit elements increases, to
the extent that recordings of typical neural signals on the order
of 100 4V peak-to-peak is no longer possible. As a solution,
we developed a new multiplexing scheme (statistically recon-
structed multiplexing architecture, SRMA) without the need for
these per-channel antialiasing filters. The spectral power con-
tributed by the under-sampled thermal noise is calculated by
statistical reconstruction, then removed from the per-channel
data, thereby preventing aliasing.

We quantified the SNR performance improvements of SRMA
over that of traditional multiplexing with area-limitations ex-
pected in high-density applications, and showed that SRMA
is able to extract signals with significantly better accuracy.
Furthermore, we implemented SRMA on a 65,536-channel,
multiplexed, electrophysiological recording system. The new
architecture is able to acquire test signals in a physiological en-
vironment with outputs comparable to single-channel, low noise
patch clamp recordings.
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