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Development of a neural interface for high-definition, 
long-term recording in rodents and nonhuman primates
Chia-Han Chiang1*†, Sang Min Won2*, Amy L. Orsborn3,4,5*, Ki Jun Yu6*, Michael Trumpis1, 
Brinnae Bent1, Charles Wang1, Yeguang Xue7,8, Seunghwan Min9, Virginia Woods1, 
Chunxiu Yu1,10, Bong Hoon Kim11,12, Sung Bong Kim13, Rizwan Huq14, Jinghua Li13,15,16, 
Kyung Jin Seo17, Flavia Vitale18,19, Andrew Richardson20, Hui Fang17, Yonggang Huang7,8,13,21, 
Kenneth Shepard14,22, Bijan Pesaran3,23†, John A. Rogers7,8,13,15,21,24,25,26,27†, Jonathan Viventi1,28,29†

Long-lasting, high-resolution neural interfaces that are ultrathin and flexible are essential for precise brain mapping 
and high-performance neuroprosthetic systems. Scaling to sample thousands of sites across large brain regions 
requires integrating powered electronics to multiplex many electrodes to a few external wires. However, existing 
multiplexed electrode arrays rely on encapsulation strategies that have limited implant lifetimes. Here, we developed 
a flexible, multiplexed electrode array, called “Neural Matrix,” that provides stable in vivo neural recordings in 
rodents and nonhuman primates. Neural Matrix lasts over a year and samples a centimeter-scale brain region 
using over a thousand channels. The long-lasting encapsulation (projected to last at least 6 years), scalable device 
design, and iterative in vivo optimization described here are essential components to overcoming current hurdles 
facing next-generation neural technologies.

INTRODUCTION
Current neural interface devices sample the brain coarsely or are 
restricted to sampling a small neuronal volume because they have a 
limited number of sensing contacts (typically ~100) (table S1). In-
creasing interface throughput to densely and simultaneously sample 

large areas of the brain with high fidelity is a pressing need for research 
and clinical neural interfaces (1). Achieving this increase in density 
and coverage requires substantially more sensing contacts. Sampling 
thousands (kilo-scale) to millions (mega-scale) of contacts simulta-
neously over a centimeter-scale area can meet this demand.

Scaling microfabricated neural interfaces presents a technical 
challenge: Individually wiring thousands or millions of electrodes is 
infeasible. Kilo-scale and mega-scale devices require powered multi-
plexing electronics directly integrated into the sensor to eliminate 
wiring bottlenecks and enable scalable electrode arrays (2–4) with 
compact packaging. Until now, these active electrode arrays (with 
integrated, powered electronics) have suffered from limited implant 
lifetimes because of encapsulation failure; voltage differentials between 
powered metal lines in the device and the biological environment 
accelerate the failure of polymer-based encapsulation (5). Encapsulation 
failures—even single pin-hole defects—introduce current leakage from 
the device into the brain, which results in both device failure and tissue 
damage (6, 7). These failures have prevented long-term in vivo use.

Optimization of kilo-scale devices is subject to numerous failure 
modes, necessitating iterative testing. Testing large-area devices must 
be done in animal models relevant for human translation, such as in 
nonhuman primates (NHPs) performing behavioral tasks. However, 
traditional testing paradigms for chronic implantable devices typically 
involve testing only one or two device iterations per animal, which 
is impractical for high-throughput technology development.

Here, we present an actively multiplexed, matrix electrode array, 
called Neural Matrix, that addresses the challenges of scalability, 
longevity, and device optimization in vivo for kilo-scale neural inter-
faces. Although our approach can be generalized to other active bio-
interfaces, including both penetrating and surface electrodes, we 
focused on surface micro-electrocorticography (ECoG) devices. 
Ultrathin (<30 m) and flexible ECoG electrode arrays can maintain 
signal quality over long periods of time with little tissue injury or 
irritation after implantation (8, 9). ECoG arrays can also sample neural 
activity densely, revealing rich spatial and temporal information hidden 
by traditional approaches such as electroencephalography and conven-
tional ECoG (4, 10).
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Our device reached high channel count while maintaining high 
electrode sampling density. We designed and fabricated Neural Matrix 
electrodes and tested them in rodents and NHPs. We developed a 
small, 8 × 8 electrode array to evaluate the performance of capacitive 
sensing and the long-term stability in rodents, and a kiloscale, 28 × 36 
electrode Neural Matrix array to demonstrate scalability and neural 
signal recording in NHPs.

RESULTS
Electrode array design and fabrication
The fabrication of the active electrode arrays builds on our recent 
advances in flexible, capacitively coupled arrays, in which thermally 
grown silicon dioxide (t-SiO2) serves not only as the biofluid barrier 
(on the front and back sides), but also as the dielectric medium for 
capacitive coupling between the brain and electrode contacts (on the 
front side). T-SiO2 encapsulation provides a robust, bendable, and 
ultrathin (~1 m) moisture barrier that is free of pinhole defects 
and, unlike polymer-based encapsulation, is reliable while devices 
are powered with direct current (dc) bias voltages (5, 11). Capacitive 
sensing further improved the encapsulation (12) by eliminating 
feedthroughs that accelerate leak current formation and eliminated 
concerns over metal corrosion. Accelerated aging projected device 
life span up to 60 years (5, 13, 14).

In the kilo-scale Neural Matrix array, two layers of metal inter-
connects and embedded multiplexers enabled recording from 1008 
electrodes (28 columns and 36 rows) at high density, while covering 
an area of 9 × 9.24 mm2 (Fig. 1, A to C). Within each unit cell, a 
constant current sink external to the array and a transistor (fig. S1, 
A to D) with a capacitively coupled input (T1 in Fig. 1D) formed a 
source-follower amplifier whose output was buffered and recorded. 
The buffered output was also alternating current (ac) coupled to a 
new dc potential (AS in Fig. 1D) and was applied to the corresponding 
drain connection of the source-follower transistor. This enabled active 
shielding, reducing the effect of parasitic drain-gate capacitances 
and improving the overall gain of the circuit. Another transistor 
(T2 in Fig. 1D), within the unit cell, multiplexed all the electrodes in 
a column to share a common output wire. In this manner, the total 
number of wires needed was 2C + R, where C is the number of columns 
and R is the number of rows in the array. The total number of wires 
could be further reduced by increasing the multiplexing ratio and/or 
integrating the active shielding circuitry into the flexible array with 
additional transistors. In vitro soak testing in a phosphate-buffered 
solution revealed high yield (99.8%) and uniform voltage gain (0.88, 
where 1 is ideal) throughout the kilo-scale array (Fig. 1E).

Flexibility and resistance to mechanical fatigue are critical for a 
robust implantable system. The Neural Matrix arrays were only 29 m 
thick in the sensing area (fig. S1E), resulting in minimal induced 
strains on each layer during bending (Fig. 1F). Finite element analysis 
(FEA) indicated that the maximum strain induced in the Si, t-SiO2, 
and metal layers for a 2.5-mm bend radius was less than 0.2%, below 
the fracture limit (~1%) (Fig. 1G). Repeated mechanical cycling of 
the device up to 10,000 cycles to a minimum bend radius of 2.5 mm 
showed no change in yield or increase in leakage current (fig. S1F).

Neural matrix array validation in rats
We fabricated a smaller (8 × 8) Neural Matrix array to evaluate 
the performance of capacitive sensing and the long-term stability of 
the t-SiO2 encapsulation in rodents. The electrode array included 

64 channels arranged in an 8 × 8 grid with an electrode pitch of 
400 m. This size and density were chosen to match our previously 
published passive electrode arrays, which used traditional faradaic 
sensing (15, 16), to allow direct comparison of the acquired signals. 
In an acute experiment, we implanted the Neural Matrix electrode 
epidurally over the rat auditory cortex (Fig. 2A), sampling electrical 
activity from a ~3.2 × 3.2 mm2 area of the brain. Field potentials 
were recorded from an anesthetized rat during (i) pseudorandomized 
presentation of 50-ms tone pips ranging from 0.5 to 32 kHz, and (ii) 
0.2-ms broadband click sound stimuli. A 3-s example of a single 
channel in the array, bandpass filtered to 2 to 100 Hz, shows clear 
responses evoked by click sounds (Fig. 2B).

To verify that electrodes in the Neural Matrix array provided 
spatially varying measurement of electrical activity in the brain, we 
calculated the spatial semivariogram. Spatial semivariogram analysis 
measured the dissimilarity of the signals as a function of distance 
and indicated a spatially varying random field with covariance prop-
erties that were well described by the Matérn covariance model. 
The length scale (2.49 mm), smoothness (0.73), and amplitude 
(~115 Vrms) of the variance model were consistent with rat auditory 
cortex potentials previously observed using passive arrays (fig. S2, A 
and B) (16), whereas the notable vertical shift in semivariance reflects 
the higher noise in the active device (~58 Vrms, 2 to 100 Hz) (Fig. 2C).

The spatial specificity suggested by the semivariogram was also 
evident in the spatially organized tone preference of sites. Examples 
of mean and single-trial responses for the best-tuned frequency at 
two sites on the array are shown in Fig. 2D. These two sites are located 
~1.44 mm apart and respond most strongly to pure-tone stimuli of 
different frequencies (locations marked in Fig. 2E). The best-tuned 
frequency at each site was determined by mapping each tuning curve’s 
center of mass at each electrode site. Tuning values were calculated 
using the Mahalanobis distance of tone responses from the mean and 
covariance of baseline vectors. The best frequency tonotopic map of 
the array recapitulated the expected tonotopy of the primary auditory 
cortex (Fig. 2E) (15–17).

We further characterized the sensitivity to auditory stimuli by 
measuring the evoked signal-to-noise ratio (ESNR), which is the ratio 
of Mahalanobis distances for evoked responses versus the distances 
computed for baseline vectors. The spatial distribution of highly versus 
moderately evoked sites matched the ESNR mapped in an earlier 
passive recording under similar preparation (Fig. 2F) (16). However, 
the median ESNR was 2.4 dB lower in the active recording, presumably 
because of higher baseline variance introduced by electronic noise 
caused by increased noise in the fabricated silicon transistors (fig. S2C).

Last, to evaluate the quality of the neural signals recorded from 
the Neural Matrix array, we used a principal components analysis 
and linear discriminant analysis (PCA-LDA) classifier with sixfold 
cross validation to predict which of 13 different tone frequencies 
were presented. Although the noise in the Neural Matrix arrays was 
high, the impact on neural signal acquisition was minimal. The averaged 
single-trial decoding accuracy was 68.72% (chance, 7.69%) (Fig. 2G). 
This decoding accuracy was consistent with decoding rates for similar 
surgical and anesthetic preparations using passive faradaic electrode 
arrays recorded with low-noise Intan amplifiers (<2.4 Vrms) (15, 16). 
Signals collected using the Neural Matrix closely matched those ob-
tained from traditional passive arrays (fig. S3).

Although this study was not designed to determine the required 
spatial sampling resolution to fully capture the detail of the ECoG 
signal, we evaluated auditory tone decoding accuracy and error 
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Fig. 1. The Neural Matrix: A flexible, actively multiplexed electrode array for high-resolution and long-term ECoG. (A) Photograph of 1008-ch Neural Matrix array. Inset: 
Each electrode is connected to a unit cell consisting of two flexible silicon transistors. Scale bar, 100 m. (B) Comparison between this work (kilo-scale device) and other 
ECoG studies (blue dots; references listed in table S1). (C) Exploded-view illustration highlighting the key functional layers of a capacitively coupled, flexible neural sensing 
system with an ultrathin layer of thermally grown silicon dioxide as the encapsulant for chronic operation. (D) Left: Schematic circuit diagram of a single unit cell with two 
matched transistors for local signal amplification and multiplexing, with active shielding circuit on the DAQ. AS denotes the adjustable active shield bias voltage. Right: 
Schematic cross section of transistor with capacitive input from adjacent tissue through the thermal SiO2 layer. (E) Histogram summary of gain values determined from 
all 1008 sensors of a representative device. Inset: The spatial distribution of the gain. (F) Image of electrode array bent around cylindrical tubes with radii of 2.5 (main) and 
1.25 mm (inset). (G) Computed distribution of bending-induced strains (radius of curvature, 2.5 mm) in four layers of the system (SiO2 biointerface layer, first and second 
metal interconnect layers, and backside-encapsulating SiO2 layer) shows strains well below the fracture limit of each material.
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after subsampling electrodes. To vary the spatial resolution, we used 
Poisson disc sampling (18) with a minimum of four electrodes to 
approximately maintain spatial coverage but vary the average spa-
tial resolution. We binned accuracy and error values by the number 
of electrodes (4 to 7, 8 to 11, and so on; n ≥ 15 samplings per bin) 
and compared mean values to 95% accuracy and 105% error results 

from the full set of electrodes. Many subsets with four to seven elec-
trodes had relative decoding scores of more than half the maximum 
accuracy and less than twice the minimum error, similar to previ-
ous sensory decoding results (19). The smallest group of electrodes 
with accuracy above 95% of the reference value was 56 to 59 elec-
trodes for rat B and 52 to 55 electrodes for rat 1 (P < 0.05; one-sided 

Fig. 2. Acute experiment demonstrating the capacitive sensing scheme. (A) The 64-ch Neural Matrix array was acutely implanted epidurally over rat auditory 
cortex. Field potentials were recorded during a pseudorandomized presentation of tone pips ranging from 0.5 to 32 kHz. Inset: Photograph of a single cell. Scale bar, 
150 m. (B) Three seconds of example raw click-evoked auditory responses from a channel from Neural Matrix array in an acute setup. Raw data were bandpass filtered (2 to 
100 Hz). The vertical red dashed line indicates the time when a broadband click sound was presented. (C) Spatial semivariogram analysis measured the dissimilarity of 
signals as a function of distance and indicated a spatially varying random field. Each gray dot represents the estimates of variance in pairwise differences between electrodes. 
Variance for each pair was calculated from the baseline signals during the interstimulus period, using samples taken every 50 ms to reduce temporal autocorrelation. (D) Mean 
and single-trial tone-evoked responses are shown for the best-tuned frequency at two sites on the array separated by ~1.44 mm. The selected sites (marked triangle and diamond) 
are labeled in (E). (E) Tonotopic map predicted from each channel’s turning curve. The best frequency of each channel was determined by mapping each tuning curve’s 
center of mass. Color of each channel indicated the best frequency of the pure-tone sound stimuli. (F) Sensitivity to tone stimuli was measured using ESNR. (G) Confusion 
matrix showing the prediction versus true label hit rate of each pure-tone sound stimuli. Tone frequencies were predicted using trial response potentials with a mean 
accuracy of 68.72% (chance, 7.69%).
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t test with Bonferroni correction for 15 groups). The last group of 
electrodes with error lower than 105% of the full data set error was 60 
to 63 electrodes for both rats (P < 0.05; one-sided t test with Bonferroni 
correction). We also compared auditory tone decoding scores for 
fixed-density, square subgrids with sizes of 2 × 2 to 7 × 7. Small-area 
subgrids (<4 × 4 in rat 1 and <5 × 5 in rat B) offered worse scores 
compared with electrode subsets with similar counts (±1 electrode) 
but larger coverage. Thus, both high density and wide coverage were 
required to maintain high decoding accuracy in these experiments 
(fig. S4).

Long-term reliability in rats
To demonstrate the long-term reliability of the arrays, we implanted 
t-SiO2–encapsulated 8 × 8 array devices chronically in five adult 
Sprague-Dawley rats. The longevity of a chronic implant typically 
depends on the speed of biofluid ingress. For an implantable system 
with integrated active electronics, biofluid penetration not only damages 
the recording capability of the device but also may induce unsafe 
leakage currents that can damage the brain. We designed our data 
acquisition system (DAQ) to continuously monitor for leakage current 
throughout all recording sessions. Leakage current remained at the 
noise floor of the recording system and well below our safety threshold 
of 1 A for more than a year in all implants but one (4 of 5; Fig. 3A).

During this chronic experiment, recordings were collected at 
intervals of 1 to 2 weeks, with a mean implant duration of 287 days 
(min, 63; max, 435). Only one implant was terminated early because of 
irregular leakage current readings (Fig. 3A); later analyses determined 
that the leakage current was due to debris in the implant connector. 
The endpoints of the remaining four implants were caused by sudden 
and irreparable loss of the headcap structure. When it was possible 
to retrieve the electrode array, we used focused ion beam (FIB) milling 
and cross-sectional scanning electron microscopy to measure the re-
maining thickness of the t-SiO2 encapsulation (fig. S5). The average 
in vivo dissolution rate was ~0.46 nm/day, projecting a life span of 
~6 years for 1-m t-SiO2.

Neural signals were successfully recorded through the t-SiO2 en-
capsulation for implant durations of over 1 year. We recorded both 
tone- and click-evoked responses during each recording session. In 
click-evoked responses, the median ESNR was low (0.46 dB mean), 
but remained above 0 dB each week over the course of a year (Fig. 3B). 
We also calculated the percentage of channels with significant ESNR 
[P < 0.05, max–signal-to-noise ratio (SNR) permutation test] each 
week, measured using a response-baseline permutation procedure 
(16). In aggregate, electrodes displayed significant ESNR (P < 0.05) 
42.7% of the time (2983 of 6993 electrode sessions) (Fig. 3B). An example 
of the average evoked responses that remained distinct from the average 
baseline exceeding 1 year of implant duration is shown in Fig. 3C.

The frequencies of auditory tones were predicted using the same 
linear classification scheme as used in the acute experiment. Single- 
trial tone decoding error remained better than chance in all animals 
throughout the implant duration (Fig. 3D). Tone-evoked responses 
were also clearly visible throughout (movies S1 and S2). Examples 
of spatial semivariograms observed at multiple points for two im-
plants are shown in Fig. 3E to demonstrate that noise power (the 
vertical offset of the semivariogram) and local field potential (LFP) 
power (the height of the semivariance curve) remained consistent. 
A locally varying signal process remained observable and had nearly 
constant root mean square (RMS) power over the implant duration, 
similar to implants of passive, faradaic electrodes over the same time 

period (Fig. 3F). Sufficiently large spatial heterogeneity to make these 
observations was only present in two rats. In a separate preliminary 
experiment, clear bouts of high-amplitude, rhythmic (6 to 9 Hz), 
spontaneous potentials (SPs) were consistently observed from the 
whisker somatosensory cortex (S1) for over 4 months (fig. S6).

Scalability of neural matrix arrays in NHPs
To demonstrate scalability, we fabricated kiloscale Neural Matrix arrays 
and implanted them in NHPs. Devices and implants were optimized 
efficiently using iterative testing (fig. S7). We tested the arrays by 
implanting them over sensorimotor cortices (Fig. 4A) of four awake 
monkeys using an artificial dura–based ECoG implant (20) (fig. S7E). 
Numerous iterations in the design and packaging of the device across 
four animals were necessary to optimize the device for in vivo awake 
behaving monkey experiments (see Materials and Methods). Arrays 
were embedded into an artificial dura, which was then implanted 
into a recording chamber (fig. S7F). Initial testing demonstrated that 
microscopic cracks introduced by handling the array and cables 
shortened device lifetimes. We therefore designed an insertion strategy 
and tool to place the device subdurally and minimize device handling 
during implantation (see Materials and Methods). In addition, the 
electrode interconnection cables exiting the array in the artificial dura 
were bent 90° with a bending radius <2 mm. To enhance the robustness 
at the interconnect cable area, a protection layer of 12.5 m of poly-
imide (PI) was added to the top surface of the array cable. The additional 
PI shifted the neutral mechanical plane closer to the front t-SiO2 
barrier, reducing induced strain. Consequently, the molded array 
retained its functionality and performance without any degradation 
during implantation. The implanted array covered premotor, primary 
motor, and primary sensory cortices (Fig. 4A). Detailed information 
on the implantation strategy can be found in Materials and Methods 
and in fig. S7.

We performed our first behavioral kilo-scale Neural Matrix re-
cordings by presenting repeatable full-field visual stimuli to evoke 
similar responses across sensorimotor cortices. We found clear visual 
evoked potentials (Fig. 4B) that were consistent in amplitude across 
the electrode array (Fig. 4C) and showed a propagating wave moving 
from sensory to motor cortices (fig. S8 and movie S3). We then re-
corded from the Neural Matrix array while the animal performed a 
delayed-reach task to seven peripheral targets (center-out design). 
The Neural Matrix array successfully revealed the spatial-temporal or-
ganization of motor processing. Broadband signals showed movement- 
related activity, with motor evoked potentials (MEPs) across the array 
(Fig. 4D). MEPs also showed clear spatial organization across the 
array that varied with the direction of the arm movement reach 
(Fig. 4, E and F and movie S4). We further examined movement- 
related signals using spectral decomposition. We found low-frequency, 
motor-related potentials in the 0.5- to 2-Hz band with direction tuning 
evident across multiple time points during movement (Fig. 4G). The 
degree of tuning varied across both time and sites within the array. 
To examine the spatial organization of direction tuning, we fit a cosine 
tuning model to each electrode across different times within the trial 
(Fig. 4, H and I). During movement planning (Fig. 4H), tuning was 
weaker and more spatially localized to the arm areas of premotor 
cortex compared with the tuning observed during movement exe-
cution (Fig. 4I), which was widely distributed across the sensorimotor 
cortices. Across the device, we computed the first time window at which 
the cosine tuning model described a statistically significant (P < 0.05 
for four consecutive time intervals) amount of data variance (Fig. 4J), 
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which revealed how the timing of tuning progressed from premotor to 
primary motor and to primary sensory cortices. These Neural Matrix 
array recordings resolved the large-scale progression of movement 
selectivity at high resolution across sensorimotor cortices during 
transformation from movement planning to execution.

To compare the Neural Matrix to more traditional intracortical 
electrodes, we simultaneously measured ECoG signals recorded from 

the surface using passive electrodes that included holes in the array 
and intracortical electrodes (including spiking and LFP signals) from 
varying depths in an anesthetized NHP and analyzed correlation 
and coherence between these signals (fig. S9). Correlations between 
ECoG and intracortical signals were strongest near the surface; 
however, ECoG also showed focal correlation with LFPs at 0.75-mm 
depth (fig. S9D). Further, ECoG signals showed strong coherence 
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Fig. 3. Long-term implantation of Neural Matrix arrays. (A) Leakage current was continuously measured throughout all recording sessions and remained below the 
cutoff of 1 A in all implants except in rat 1 (R1). (B) Click-evoked responses were measured during each recording session. Recordings from each animal and week were 
binned together and are shown in box plots (median bin size, 151 electrode sessions; min, 54; max, 445). Top horizontal bars indicate the implant duration for each animal. 
The bar plot at the bottom shows the percentage of channels in each week with significant ESNR (P < 0.05, max-SNR permutation test). (C) Example click responses (blue) 
and baseline potentials (black) recorded from rat 4 (R4) at three points in the implantation history show average evoked responses that remained distinct from the average 
baseline exceeding 1 year of implant duration. The median ESNR across recording sessions is mapped per electrode. (D) Single-trial tone decoding error was measured, 
in octaves, in each recording session. Decoding remained above chance (2.15 octaves) in all animals throughout the implant duration. (E) Example semivariograms from 
two rats (R3 and R4) at early, middle, and late implant time points. Semivariance analysis was performed for each recording session to validate a spatially varying process 
and to track the noise power (the vertical offset of the semivariogram) and local field potential power (indicated by the height of the semivariance curve). (F) Average 
total signal variation was measured longitudinally with root-mean-square voltage calculated on the voltage time series. Field power calculated from semivariogram 
analysis (in microvolt units) is shown.
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Fig. 4. Kilo-scale, multibrain region recordings in NHPs. (A) Schematic representation of electrode array placement on the cortical surface. The circle represents the full 
implant area; the shaded orange area denotes the region of electrode contacts. The recording area spans premotor, primary motor, and primary sensory cortices. ArcS, arcuate 
sulcus; CS, central sulcus; IPS, intraparietal sulcus; PMd, dorsal premotor cortex; M1, primary motor cortex; S1, primary sensory cortex. (B) Evoked visual potentials (broadband), 
triggered at the time of visual stimulus onset, computed across all visual stimulation trials. The black trace shows the mean across all 1008 electrodes; gray traces show 
examples for 10 randomly selected electrodes. (C) Distribution of visual evoked potential amplitudes across the array (black); solid gray line shows mean, and dashed gray 
shows ± interval. (D) Evoked movement potentials (broadband), triggered at the time of movement onset, computed across all reach trials. Format as in (B). (E) Evoked 
movement potentials as in (D), now separated by movement directions. Traces represent the mean across all 1008 electrodes. Two of the seven movement directions are 
shown (dark blue, rightward reach; light blue, leftward reach). (F) Spatial maps of evoked movement potentials, separated by movement directions (top row, rightward reach; 
bottom row, leftward reach) over time during movement. Full temporal evolution shown in movie S4. (G) Direction tuning in the 0.5- to 2-Hz band for an example electrode. 
Average power across trials, separated by reach direction, for two directions (preferred and antipreferred directions during reaching). Solid lines show the trial mean, 
shaded regions represent the standard error. Inset shows the average power as a function of movement direction for two different time windows (premovement 
[−300 ms, −100 ms] in gray; movement [100 ms, 300 ms] in black). (H) Spatial map of cosine tuning parameters across the electrode array for the premovement period 
[−300 ms, −100 ms]. Scaled modulation depth (top, see Materials and Methods) and preferred direction (bottom) show focal and weak tuning centered around the arm 
area of the premotor cortex. (I) As in (G) but for the early motor period [100 ms, 300 ms]. Tuning during movement grows to cover large portions of the arm areas of 
sensorimotor cortices. (J) Spatial map of the time window when directional tuning first became statistically significant (P < 0.05 for four consecutive time intervals) for each 
electrode reveals a temporal evolution of directional information starting in focal areas of the premotor cortex that then shifts to the primary motor and sensory cortices. 
Location of the example electrodes from (G) is indicated by the red circle. a.u., arbitrary units.
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with LFPs recorded from 0.75 and 1.25 mm within the cortex (fig. 
S9E). This coherence was spatially specific and substantially reduced 
in distant ECoG contacts. Coherence in low-frequency bands 
(<10 Hz) found to encode movement information was particularly 
pronounced. ECoG signals also showed strong coherence with multi-
unit activity captured from deeper layers of the cortex (1.25 mm) 
(fig. S11F). Coherence was both spatially specific to nearby electrodes 
and most pronounced in low-frequency bands (<10 Hz).

DISCUSSION
Our approach improves on the state-of-the-art in multiple ways: (i) 
Scaling to over a thousand channels with fewer than 100 external 
wires was achieved through integration of flexible, active electronics 
at each electrode contact. (ii) The device is ultrathin (~29 m) to 
ensure conformal contact with the brain and improve signal longevity. 
Device longevity was increased by (iii) using t-SiO2 encapsulation 
strategies and (iv) changing the method of electrical sensing from 
faradaic to capacitive. (v) Rapid, iterative in vivo testing in NHPs 
was enabled by using integrated artificial dura array packaging (20). 
Moreover, our devices were made using standard silicon fabrication 
processes. Transitioning our design to commercial fabrication will 
simultaneously enable increased sensor resolution and larger coverage 
while producing large quantities of devices at low cost.

These results demonstrate possible solutions to several critical 
challenges faced by all implantable active electronics in the body. We 
established methods to achieve safe, robust, and high-performance 
flexible electronics with in vivo durability projected to be at least 
6 years in a scalable design optimized using an iterative testing pro-
cedure. The encapsulation scheme could be modified to extend longevity 
to a human life span by adding an additional 100 nm of HfO2 (13) 
or by using a trilayer structure with 50 nm of Parylene C (14) to 
further slow the dissolution rate.

High-resolution kilo-scale and mega-scale neural interfaces will 
be increasingly important in the next generation of neural diagnostic 
(21, 22), therapeutic (23, 24), and prosthetic (25) devices. The iterative 
testing strategy we present here will enable further device scaling 
offering powerful insights into brain function. Active devices can 
sample large areas of the brain at high density, and we anticipate 
they will be able to resolve multiunit activity from the surface of the 
brain (9). Our simultaneous analysis of ECoG and intracortical 
electrodes suggests that ECoG may capture signals with strong re-
lationships to intracortical electrodes. ECoG may also capture spatially 
specific signals, reflecting LFP and multiunit activity from the upper 
cortical layers. This suggests the surface activity may provide an ex-
cellent signal for neural prosthetic applications.

However, there were some limitations to this work. Scar tissue may 
be observed under similarly sized electrode arrays when chronically 
implanted based on prior studies (26). Although we did not perform 
histology in these experiments, we have implanted similar devices 
using t-SiO2 encapsulation in the mouse brain and performed his-
tology at 5 weeks after implant (27). Histophathological evaluation 
of the images revealed no sign of inflammation, necrosis, or struc-
tural abnormalities in the brain, heart, kidney, liver, lung, or spleen, 
suggesting that Neural Matrix arrays might be safely implanted long 
term. This will need to be investigated in future studies.

Another limitation to this work was the increased noise in Neural 
Matrix devices. We suspect that the noise in the Neural Matrix devices 
was high due to imperfections in transistors manufactured in a univer-

sity cleanroom. We predict that commercial complementary metal- 
oxide-semiconductor (CMOS) could markedly reduce noise in the 
device by incorporating higher-quality transistors and local ampli-
fication. Leveraging commercial CMOS manufacturing might provide 
numerous additional benefits for future generations of high- throughput 
neural interfaces. CMOS will likely enable neural interface systems 
to scale to millions of electrodes, well beyond what is possible using 
passive electrodes that are individually wired to remote electronics. 
CMOS integration will also enable electrical stimulation, amplification, 
digitization, on-board signal processing and data reduction, and 
wireless data and power transmission, creating an implantable device 
where the integrated circuit is the entire system. Although the optimal 
spatial sampling density for low-frequency neural signals (LFP) is 
currently unknown, spatial oversampling of lower-frequency LFP 
will enable additional noise reduction techniques to mitigate the aliased 
noise introduced by multiplexing at the electrode without low-pass 
filtering (28).

In summary, we developed an implantable active electrode array, 
the Neural Matrix, for long-term in vivo use in a preclinical setting 
with flexible electronics that are scalable in coverage, channel count, 
and resolution. Neural recordings were stable for over a year of im-
plantation in rodents and showed similar stability to gold contact, 
faradaic, passive electrodes (16). Our results validate techniques for 
fabrication and in vivo testing of long-lived, encapsulated active 
electronics that readily scale to high channel counts, enabling a new 
generation of flexible neural interfaces for prosthetic and closed-loop 
therapeutic applications.

MATERIALS AND METHODS
Study design
To choose the spacing between electrodes in the design of our Neural 
Matrix electrodes, we considered recent studies that compared electrode 
correlation or coherence by electrode pitch. These studies suggest 
that the spatial correlation of ECoG varies from submillimeter to a 
few millimeters depending on the recording location (epidural or 
subdural) and whether the animal is awake (15). The spatial correla-
tion is also highly dependent on the frequency band (29, 30). Therefore, 
we wanted to sample densely (250-m pitch in NHPs and 400-m 
pitch in rats) to be able to resolve fine features in the ECoG signal.

We chose to focus our experiments on LFP signals mainly because 
of limitations of the DAQ. The DAQ was not able to sample fast 
enough to capture spiking activity from the surface of the brain. Further, 
we can readily compare LFP signals from auditory cortex to prior 
work (15, 16). In contrast, spiking activity from the surface of the 
brain has not yet been sufficiently described in the literature to be 
useful as a benchmark signal for neural technologies. Therefore, we 
chose to bandpass filter the data between 2 and 100 Hz to study the 
LFP activity captured by the arrays.

The behavioral experiments in NHP were designed to test the 
ability of the device to measure neural responses to sensory and motor 
stimuli and resolve motor cortical tuning. For the visual response 
task, we presented the visual stimulus a sufficient number of times 
to resolve a motor cortical visual evoked potential. For the center- 
out task, we randomly interleaved trial conditions requiring movements 
to different targets and collected data until the monkey decided to 
stop performing the task.

We designed our rat studies to test the longevity of the Neural 
Matrix devices for as long as possible. We chose not to euthanize the 
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animals at specific endpoints, as would be required to obtain histology. 
Instead, we left the devices implanted as long as possible to assess their 
longevity. Each implant ended when the rat’s headcap became detached, 
causing irreparable damage to the implant. Seven rats (five chronic 
and two acute) and four NHPs were implanted in this study.

Capacitive sensing
Each unit cell contained two n-channel MOSFETs (metal oxide 
semiconductor field-effect transistors). The source-follower transistor 
buffered the capacitively sensed neural potential, and the switch 
transistor provided multiplexing between electrodes in the same 
column. The large area of the electrode provided a sensing capaci-
tance roughly three times larger than the gate capacitance of the tran-
sistor. The sensing electrodes were 100 × 180 and 195 × 270 m2 for 
devices used in NHP and rat studies, respectively. From the thin film 
capacitance equation, C = r0A/t, where r is the relative permittivity, 
0 is the vacuum permittivity, A is the area, and t is the thickness of 
the dielectric, CSensing NHP = 3.3Cgate NHP and CSensing rat = 4.9Cgate rat. 
The input capacitance driving the channel in the sensing transistors 
for NHP and rat model were then 0.77Cgate NHP and 0.83Cgate rat, re-
spectively, from combining sensing and gate capacitance in series. 
The effective capacitance of the electrode gate was further reduced 
by active shielding, ensuring unity gain from the sensing transistor.

Characterization from a passive electrode array (fig. S10) using 
the same capacitive sensing through ~1 m of t-SiO2 yielded an es-
timated capacitance of ~2 and ~0.7 pF and corresponding electrode 
impedance of ~80 and ~230 megohms at 1 kHz for the rat and NHP 
electrodes, respectively. These high electrode impedances were con-
verted to substantially lower output impedances by the current gain 
of the integrated buffer amplifier at each electrode.

Mechanical analysis
The strain distribution in the neural sensing array under pure bending 
was modeled using FEA. The device was pressed conformally onto a 
rigid cylinder with a predefined radius. Three-dimensional solid elements 
(C3D8R in Abaqus finite element software) were used for thicker layers 
including the Kapton layer, PDMS (polydimethylsiloxane) layer, PI 
layer, and top thermal silicon oxide layer, whereas shell elements 
(S4R) were used for thin Au layers. For a 2.5-mm bending radius at 
the sensing area (bottom surface), the maximum strain was ~0.2% 
in the top thermal oxide layer, 0.17% in the first metal layer, and 
0.1% in the second metal layer.

In the NHP experiment, the DAQ design was scaled up to record 
1008 channels by using more PXI-6289 cards. An effective final sam-
pling rate of 434 Hz per electrode channel was achieved. The system 
diagram for NHP experiments are shown in fig. S12.

Awake recording (rat)
All chronically implanted rats were recorded while freely behaving 
in a sound-attenuated chamber. The equipment and experimental 
stimuli were the same as described in the rat acute experiment. The 
first recording sessions were performed 7 days after surgery. Each 
rat was recorded initially every week and then later every 2 weeks. 
Leakage current was continuously monitored during all recordings 
to ensure safety.

Data analysis (preprocessing/spatial denoising)
ECoG field recordings were bandpass filtered from 2 to 100 Hz 
using third-order Butterworth filters. Tone- and click-evoked epochs 

were further processed with a heuristic hard-threshold singular value 
decomposition (SVD) denoising for multichannel data (31). Both the 
neural field signal and the electrode/electronic noise are autocorrelated 
signals, causing the SNR to vary with frequency. To adapt to varying 
SNR, we applied the hard-threshold SVD denoising to sub-band signals 
using a tight-frame tunable-Q wavelet transform (TQWT), with 
10 log-spaced, redundant frequency bands in addition to a low-pass 
residual (32). Sub-band wavelet coefficients were computed for a multi-
channel matrix composed of concatenated evoked responses. The denoised 
coefficients were then reconstructed to full band with the inverse TQWT.

Evoked signal-to-noise ratio
We measured detectability of evoked responses using an ESNR metric 
of poststimulus versus prestimulus time series (16). Evoked-signal 
power in ESNR was computed using the average Mahalanobis distance 
of poststimulus vectors from a large sample of baseline vectors. This 
distance can be interpreted as measuring the improbability of a re-
sponse vector arising from the same stochastic process as the baseline 
vectors. The ratio was normalized by the average Mahalanobis distance 
of the individual prestimulus baseline vectors. We pooled all trials 
when measuring click-evoked SNR, but the tone-evoked SNR was 
measured using only the maximum-distance tone (and a matching 
sample of the largest percentile of baseline distances).

Tone decoding
We used the linear classifier described in (15, 33) to predict tones 
given array responses. Response covariates were concatenated from 
the field potential at each channel, bandpass filtered from 2 to 100 Hz, 
and windowed from 5 to 80 ms following each tone presentation. A 
channel was fully omitted from the classifier if more than 5% of its 
responses were outlying. For channels with a lower number of out-
lying responses, such samples were imputed from the surrounding 
array channels using image in-painting that iteratively filled masked 
pixels based on points bordering the missing regions. Tone decoding 
was summarized by accuracy (the proportion of successfully classified 
trials) and the average error of classification, measured in octave 
difference between the predicted and true tone.

In vivo recording (NHP)
Packaging devices to enable rapid, iterative testing in awake, behav-
ing monkeys trained to perform behavioral tasks let us optimize the 
devices. Subdural cortical surface electrodes are typically implanted 
onto the cortical surface, and the electrode interconnection cable 
containing the electrical activity percutaneously exits the implantation 
site to an external connector (fig. S7A). In chronic implants, devices 
are minimally packaged (fig. S7B), requiring manual probe placement 
and cable routing during surgery. Because the Neural Matrix arrays 
were actively powered, damage to the electrode interconnect cable 
leads to leak currents and device failure. Device testing cycles with a 
traditional implant technique (fig. S7C) are slow and nonmodular. 
Each test outcome takes on the order of months because it requires 
preparing a new animal, new surgical implantation, and post-op re-
covery before awake behavioral recordings can occur. Furthermore, 
all aspects of the implant—device, placement, and packaging—change 
on each iteration, making careful isolation of failure modes difficult. 
We developed a chamber-based implant and device packaging system 
(fig. S7, D to F). Probes are placed by packaging them into an artificial 
dura, which is nonsurgically replaceable. Cable routing is specified 
by this packaging (fig. S7, D and E) and chamber geometry (fig. S7F) 

 at N
O

R
T

H
W

E
S

T
E

R
N

 U
N

IV
 on A

pril 8, 2020
http://stm

.sciencem
ag.org/

D
ow

nloaded from
 

http://stm.sciencemag.org/


Chiang et al., Sci. Transl. Med. 12, eaay4682 (2020)     8 April 2020

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

10 of 12

and is therefore reproducible and controlled. Sterile implant sealing 
is achieved using chamber hardware (fig. S7F), providing reversible 
and mechanically reproducible seals. This innovation provides both 
rapid and modular test cycles (fig. S7G) by separating the surgical 
hardware implantation from probe-specific testing. Animal prepara-
tion (training and surgical implants, which take months) is separate 
from device placement and testing, producing test cycles from new 
device to behavioral recordings on the order of days. The chamber- 
based approach affords precision and control in device placement 
and packaging, which allows modular testing of the device, its place-
ment, and packaging. Last, this strategy allows more test cycles to be 
performed within the same animal and surgical site, providing a way 
to ethically reduce the number of animals needed for a study. For 
our iterative testing and recordings, we first implanted a recording 
chamber in which the dura was replaced with an artificial dura. We 
then tested individual devices by replacing the artificial dura with 
another that contained an embedded ECoG array (20). The artificial 
dura was replaced with the one containing the embedded device 
immediately before the recordings.

Several revisions were necessary to avoid postimplantation damage 
to the electrode interconnect cable. We made changes in the artificial 
dura to avoid stress on the arms where they bent within the mold. 
We made refinements to the implantation procedure to minimize 
array handling by designing a custom insertion tool. With the inser-
tion tool, the array could be implanted by simply placing it onto the 
cortical surface without the need to make additional adjustments. 
Last, we made changes to the chamber system to avoid stress on the 
arms when sealing the implant site after implantation. Over 20 itera-
tions in the design of the device and packaging across four animals 
were necessary to optimize the device for in vivo awake behaving 
monkey experiments.

Having optimized the kilo-scale Neural Matrix array and pack-
aging, we successfully recorded neural activity in the third animal 
performing two behavioral tasks. In the visual task, we presented 
full-field visual stimuli, which the animal viewed passively. Full-field 
visual stimulation was performed by illuminating the task display for 
150 ms with randomly spaced intertrial intervals (400 to 1000 ms). 
Next, in a motor task, the animal performed the delayed center-out 
reach task on a touch screen. The animal touched an initial central 
target for a short baseline interval (400 to 600 ms), after which one 
of seven possible peripheral targets appeared on the screen (circular 
arrangement with 45° spacing, excluding the bottom-most target). 
After an instructed delay (250 to 750 ms), the central target disap-
peared, cueing the animal to reach to the peripheral visual target. 
Successfully acquiring the peripheral target resulted in a liquid reward. 
Target directions were presented in a pseudorandom order with 
balanced distributions of successful target acquisitions to all targets. 
We define reach onset as the time at which the animal lifts its hand 
off the screen to begin moving to the peripheral target. Figure 4 
presents data from a behavioral session in which we presented full-field 
visual stimuli 581 times and the monkey performed 412 successful 
reach trials.

Data preprocessing (NHP)
Raw broadband data revealed periodic physiological artifacts, which we 
denoised using a mode decomposition procedure (34) followed by 
spectral harmonic suppression. We estimated the empirical modes 
using PCA. The spectra of the individual modes revealed evidence 
of power in excess of a smooth background. We suppressed the ex-

cess power by modeling the raw signal as a sinusoid with variable 
amplitude, phase, and frequency within 2.5 ± 1, 5 ± 1, and 7 ± 1 Hz. 
We fit the sinusoid every 5 s (F test). We then subtracted the modeled 
time series from the empirical modes. The results of the procedure 
were validated by comparing the empirical mode spectra before and 
after denoising and confirming excess power was no longer present. 
We then transformed the data back into the original [space, time] 
coordinates for further analysis.

Data analysis (NHP)
All analyses were performed with trial-aligned data aligned to the 
time of reach start. Neural activity was mean subtracted on a trial- 
by-trial basis for each electrode to remove dc offsets. Movement- 
evoked potentials were computed by averaging trial-aligned broadband 
signals across trials. Spectral analyses were done by computing power 
in the 0.5- to 2-Hz band with multitaper spectral estimation (1-s win-
dow, 2-Hz frequency smoothing window, and 50-ms step size). Direc-
tion tuning was computed by relating the mean power with movement 
direction, similar to spiking models used in motor cortex (35). Each 
contact’s power (f) was fit to a cosine direction tuning function:

  f =  B  1   cos( ) +   B  2   sin( ) +   B  3    

where  represents the reaching angle, and B1, B2, and B3 are linear 
constants. A modulation depth (MD) and preferred direction (PD) 
are then defined as  MD =  √ 

_
  B 1  2  +  B 2  2     and  PD = arctan( B 2  2  /  B 1  2 ) , re-

solved to the correct quadrant. Tuning parameters were estimated 
using the average power in a given time window, which was varied 
(see Fig. 4, F to H). Reach angle was determined by the reach target 
location. Tuning parameters, regression coefficients (R2), and statis-
tical significance (P value) of model fits were estimated via linear regres-
sion (MATLAB, MathWorks Inc.). For map visualization (Fig. 4,G 
and H), MDs were scaled by a weighting factor proportional to the 
significance value of the fit. Each electrode MD was scaled by a 
weight w, which was related to P values via a logistical function that 
was approximately 1 small P value and rapidly decayed to zero for 
less significant fits: w = 1/(1 + e−k(p

0
 − p)) with constants k and po set 

to 100 and 0.08, respectively. The timing of the first tuning was 
computed by fitting a cosine tuning model with a sliding window 
(200-ms window length, 25-ms step size) and finding the first time 
when at least four consecutive windows had P values <0.05. The re-
ported time represents the start of the 200-ms window. All spatial 
maps were smoothed using a Gaussian filter with 0.6-pixel SD.

Statistical analysis
In rodent experiments, analysis of spatial variation (semivariance) 
of ECoG field potential was computed by one-half the sample variance 
of pairwise electrode differences. A covariance kernel including noise 
and “local” field variance parameters was fit to semivariance clouds 
using nonlinear least squares. Local RMS voltage was the square root 
of the estimated field variance parameter. To assess significance of 
ESNR values under multiple comparisons, we used permutation testing. 
Under the null hypothesis that evoked and baseline trials were in-
terchangeable, we computed the maximum ratio across electrodes 
(“max-SNR”) for 5000 permutations of evoked/baseline labels per 
recording. True ESNR values above the 0.95 quantile of a max-SNR 
sample corresponded to significance at P < 0.05.

All NHP data that are not single trial are shown as a mean with 
confidence intervals (CIs) indicating standard errors. Statistical analysis 
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of directional tuning parameters, R2, and statistical significance (P value) 
of model fits were estimated via linear regression. The timing of first 
tuning was calculated the first time when at least four consecutive 
windowed regressions were found to be significant at an alpha value 
of 0.05.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/12/538/eaay4682/DC1
Materials and Methods
Fig. S1. Design and characterization of the Neural Matrix arrays.
Fig. S2. Semivariogram of passive electrode and noise analysis of the active Neural Matrix 
electrode array.
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Fig. S4. Auditory classification accuracy with varying spatial resolutions.
Fig. S5. FIB measurement of t-SiO2 thickness postimplantation.
Fig. S6. Stable recording of SPs.
Fig. S7. Chamber-free and chamber-based neurotechnology device testing approaches.
Fig. S8. Detailed spatiotemporal pattern recorded by the kiloscale Neural Matrix array.
Fig. S9. Comparison of ECoG and intracortical recordings.
Fig. S10. Characterization of a passive capacitive electrode array.
Fig. S11. DAQ for rat experiment.
Fig. S12. DAQ for kiloscale Neural Matrix array.
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Movie S1. Tone-evoked spatiotemporal patterns from rat 4 at day 7 of implantation.
Movie S2. Tone-evoked spatiotemporal patterns from rat 4 after 1 year of implantation.
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scalable to humans for clinical purposes.
implantation. The Neural Matrix will be useful for the study of brain physiology in preclinical setting and might be
rodents and nonhuman primates. The system provided stable recordings projected to last for 6 years after 

ina neural interface device, called Neural Matrix, that allowed stable in vivo neural recordings with high throughput 
. developedet aldevices only allow recordings of small brain areas with limited number of electrodes. Here, Chiang 

necessary for understanding brain physiology and disease pathophysiology. Unfortunately, current brain interface 
Recording large number of neural signals in real time with high definition for long periods of time is

Recording in high resolution
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