
A Scalable Methodology for Agile Chip Development
with Open-Source Hardware Components

(Invited Paper)

Maico Cassel dos Santos1,†, Tianyu Jia2,†, Martin Cochet3, Karthik Swaminathan3,
Joseph Zuckerman1, Paolo Mantovani1, Davide Giri1, Jeff Jun Zhang2, Erik Jens Loscalzo1,

Gabriele Tombesi1, Kevin Tien3, Nandhini Chandramoorthy3, John-David Wellman3,
David Brooks2, Gu-Yeon Wei2, Kenneth Shepard1, Luca P. Carloni1, and Pradip Bose3

Columbia University1, Harvard University2, IBM Research3

ABSTRACT

We present a scalable methodology for the agile physical design of

tile-based heterogeneous system-on-chip (SoC) architectures that

simplifies the reuse and integration of open-source hardware com-

ponents. The methodology leverages the regularity of the on-chip

communication infrastructure, which is based on a multi-plane

network-on-chip (NoC), and the modularity of socket interfaces,

which connect the tiles to the NoC. Each socket also provides its

tile with a set of platform services, including independent clocking

and voltage control. As a result, the physical design of each tile

can be decoupled from its location in the top-level floorplan of

the SoC and the overall SoC design can benefit from a hierarchi-

cal timing-closure flow, design reuse and, if necessary, fast respin.

With the proposed methodology we completed two SoC tapeouts

of increasing complexity, which illustrate its capabilities and the

resulting gains in terms of design productivity.

KEYWORDS

System-on-Chip, Agile Design, Open-Source Hardware, Hetero-
geneous Computing, Computer Architecture, Network-on-Chip.

1 INTRODUCTION

One of the major consequences of the slowdown of Moore’s Law [9,

11] and the end of Dennard’s scaling [4, 14] has been a continuous

growth in the complexity of chip design. Heterogeneous system-

on-chip (SoC) architectures that combine multicore processors

and specialized hardware accelerators [13] on the same die have

emerged as the preferred solution to achieve both performance

and energy efficiency across all main application domains [22]. As

the costs of developing a new leading-edge SoC continue to rise,

new methodologies and platforms that support design reuse are

needed to reduce them by an order of magnitude [35]. In this con-

text, open-source hardware (OSH) can play a unique role to support

design reuse by promoting entrepreneurial innovation and collabo-

rative engineering across industry and academia [21]. The success

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9217-4/22/10.
https://doi.org/10.1145/3508352.3561102

Figure 1: Proposed methodology for agile chip development.

of the RISC-V open standard Instruction Set Architecture (ISA) [32]

has triggered a wave of new SoC architectures [37]. As more OSH

components become available, the open-source community needs

CAD methodologies that support turning these components into a

variety of SoC designs that are specialized for target domain appli-

cations. Together with methodologies that simplify the logic design

and system-level integration of OSH components, it is necessary to

develop agile methodologies for the physical design of these SoCs.

Key properties of these methodologies are flexibility, robustness,

and scalability.

A methodology is flexible when it supports the smooth inte-

gration of a heterogeneous set of OSH components from distinct

development sources and can adapt to use multiple projects’ target

technologies and preferred EDA tools while meeting performance,

power, and area (PPA) requirements. Large and complex SoCs, for

instance, often require multiple power and clock domains and their

design requires high-end tools and advanced technologies to meet

performance goals while keeping power dissipation under con-

trol. In contrast, smaller or simpler SoCs may have more relaxed

performance and power constraints that can be met with mature

technologies and use of open-source EDA tools [31].

A physical designmethodology is robust when it not only achieves

the target quality-of-results (QoR) metrics but also verifies func-

tional correctness at each step from RTL specification to the GDS

† These authors have equal contributions.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on April 09,2023 at 14:29:55 UTC from IEEE Xplore. Restrictions apply.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA M. Cassel Dos Santos et al.

Figure 2: The ESP architecture and its five main types of tiles.

implementation. While EDA vendors provide their own recom-

mended flows, a variety of problems can still arise, including, but

not limited to, logical or physical design issues, poor or inaccurate

settings of the CAD tools, and inconsistencies with the technol-

ogy models. The more a design flow can avoid these mistakes and

promptly detect issues, the more robust is the methodology in its

support of design reuse.

A methodology is scalable if it can handle the growth in size

and complexity of SoC designs with a sublinear growth in terms

of computation infrastructure, engineering effort, and design time.

As the SoC complexity scales, more data must be processed by the

EDA tools’ algorithms and the machines running these tools need

more cores and memory to reach the final GDS implementation

efficiently. Without a scalable design methodology, both computing

power and design effort can grow exponentially, thus causing the

design time to skyrocket.

This paper presents a flexible, robust and scalable methodology

for the agile physical design of heterogeneous SoC architectures.

As shown in Fig. 1, the methodology builds on the ESP platform

for SoC design and programming [28] by augmenting its original

capabilities for FPGA-based SoC prototyping with support for chip

development up to the final tapeout of the SoC implementation. As

discussed in Section 2, the ESP platform combines a tile-based archi-

tecture and a system-level design methodology for the integration

of OSH components and the derivation of the RTL implementation

of a complete SoC instance. Thanks to the contributions described

in this paper, a GDS implementation of each tile of this SoC instance

can now be individually obtained from the RTL implementation

by using the tile-based physical-design flow presented in Section 4.

This flow relies on the enhancements to the ESP architecture de-

scribed in Section 3. The top-level SoC integration, described in

Section 5, uses the tile’s Interface Logic Model (ILM) and Layout

Exchange Format (LEF) views for top-level placement and tim-

ing closure. Top-level Design Rule Check (DRC) and Layout Versus

Schematic (LVS) confirm the chip is ready for manufacturing. These

steps can be performed in a more agile way with the verification

and testing framework described in Sections 6 and 7, respectively.

Our methodology was used to complete the chip tapeouts for two

SoC architectures of growing complexity, as detailed in Section 8.

2 BACKGROUND ON ESP

ESP is a platform for heterogeneous SoC design and program-

ming [28]. Developed over the course of more than a decade of

research and teaching at Columbia University [6, 7], ESP combines

a scalable architecture and a flexible system-level design method-

ology. As shown in Fig. 2, the ESP architecture is structured as a

heterogeneous tile grid build upon a 2D mesh, multi-plane network-

on-chip (NoC) [38]. Each type of tile serves a different purpose in

the SoC, but every tile is encapsulated in a modular socket. The

socket decouples the design of the tile from the NoC following the

principles of communication-based system-level design [5]. It also

provides several platform services to the intellectual property (IP)

block of each given tile (e.g. dynamic voltage frequency scaling,

performance counters, coherence, DMA, etc.). The ESP architec-

ture hence strikes a balance between regularity and specialization.

Currently, there are five main types of tiles in the ESP architecture.

The Processor Tile contains a CPU developed by a third-party

vendor, instantiated off-the-shelf with its own private L1 cache. The

processor options include the 32-bit SPARC Leon3 core [15], the

32-bit RISC-V Ibex core [26], and the 64-bit RISC-V CVA6 (formerly

known as Ariane) core [39]. In the case of the Leon3 and CVA6 cores,

the processor tile can instantiate the ESP L2 cache, which allows

the core to transparently participate in the ESP coherence protocol,

supporting multicore execution and booting Linux SMP [19, 41].

The development of the methodology described in this paper was

driven by the design of chips that use the CVA6 core, but it could

be easily extended to support also the other cores.

The Memory Tile provides a channel to external memory. ESP

allows for the seamless instantiation of multiple memory tiles to

satisfy the bandwidth requirements of large SoC designs; in such

case, each memory tile serves a discrete partition of the global

address space and the logic to route requests to the appropriate

tile is automatically generated. When the ESP cache hierarchy is

enabled, the memory tile contains the ESP last-level cache (LLC).

The LLC, together with the L2, implements a standard directory-

based MESI coherence protocol, adapted to work over a NoC [19].

The ESP LLC additionally can handle DMA requests directly from

accelerators in an LLC-coherent manner, as proposed in [12].

The Auxiliary Tile hosts the non-memory I/O interfaces of

the SoC, such as Ethernet and UART, as well as miscellaneous

Authorized licensed use limited to: Columbia University Libraries. Downloaded on April 09,2023 at 14:29:55 UTC from IEEE Xplore. Restrictions apply.

A Scalable Methodology for Agile Chip Development... ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

components, such as the bootROM and interrupt controller. The

Ethernet connection supports remote connection through SSH and

enables the ESPLink debug application, which is an important part

of the testing framework described in Section 7.

The Shared Local Memory (SLM) Tile can be instantiated to

add to the on-chip memory capacity of SoCs. It provides a software-

managed scratchpad that lies outside of the coherent address space

and can be shared by multiple CPUs and accelerators that access it

via DMA. The SLM tile is especially important in ASIC prototypes

that may not contain a DDR controller and thus pay an increased

penalty for accessing external memory.

As ESP embraces heterogeneity in SoC design, the Accelerator

Tile is a key component of the architecture. In ESP, accelerators are

given equal importance as processors in the SoC and hence occupy

their own tile. They are loosely-coupled accelerators [12], executing

coarse-grained tasks when invoked by a processor core through a

device driver. When communicating with the memory hierarchy an

accelerator utilizes one of several coherence modes – ranging from

bypassing the cache hierarchy entirely with DMA to participating

in the system’s coherence protocol when equipped with a private

L2 cache – that can be selected at runtime based on the workload

characteristics and dynamic status of the system [18, 20, 40]. ESP

provides several design flows for new hardware accelerators: at

the RTL level; with C, C++, or SystemC with a high-level synthesis

(HLS) tool; or directly from high-level machine learning models

using the open source HLS4ML tool [16, 33]. When utilizing these

flows, the socket of an accelerator tile provides platform services for

address translation, DMA, configuration registers, and coherence.

Hence, designers can focus on the optimization of their accelera-

tors without having to “reinvent the wheel” with respect to these

capabilities. ESP also provides a flow to integrate pre-designed

third-party accelerators (e.g., the NVIDIA NVDLA [30]), so long as

they comply with a standard interface, such as AXI [17].

The Network-on-Chip comprises six physical planes [38] and

uses dimension-order look-ahead routing. Three planes are dedi-

cated to coherence messages, two to DMA, and the last to access

memory-mapped registers and interrupts. The NoC is synchronous

and achieves single-cycle latency between adjacent routers. Each

tile has a set of proxies that convert bus requests to NoC messages

and vice versa. Thanks to the proxies, components in different tiles

can exchange messages as if they were connected to the same bus.

3 ENHANCEMENTS TO ESP FOR ASIC DESIGN

For most of its history, the ESP project has focused on system-

level design up to RTL implementations and SoC prototyping with

FPGAs. Thanks also to the contributions described in this paper,

ESP can now be used to realize ASIC implementations of SoCs.

The physical-design flow for agile chip development presented in

the next sections is supported by many enhancements to the ESP

architecture. This section summarizes the main ones.

Hierarchy Restructuring. Previously, the NoC in ESP existed

as its own entity – instantiated along with all of the tiles in the

top level of the design. This design choice can pose problems for

the top-level design and integration of a chip, as it can be difficult

for EDA tools to achieve good QoR placing and routing of the

NoC around the tiles. For this reason, we restructured the ESP RTL

hierarchy, such that each tile now has a wrapper that instantiates

the ESP socket, the encapsulated IP, and a single NoC router for

each plane; this combination will henceforth be referred to as a

tile. This approach better supports design partitioning (Section 4)

and simplifies the top-level chip integration to routing connections

between tiles (Section 5).

Control and Status Registers. Since our chip implementations

require a greater degree of configuration at run time, we created a

new set of Control and Status Registers (CSRs) in each tile. Each set

of CSRs is an APB subordinate that can be accessed either through

ESPLink or from software running on the SoC. CSRs provide the

configuration for components, such as a digitally controlled oscilla-

tor (DCO) and pads. Another important CSR is the tile ID register.

The tile ID identifies the tile’s position in the SoC to logic within

the tile. This is needed to form NoC packets and correctly route

packets that pass through the tile. Previously, the tile ID was a

parameter passed to the RTL of the tile at design time. However, in

order to ensure that each type of tile only needs to be implemented

once, we changed the tile ID to be in a CSR that gets set at runtime.

At reset, a simple component in the auxiliary tile sends the tile ID

over the NoC to each tile in a specific sequence that guarantees

the routability of all of these messages. The CSRs also include an

extensive set of performance counters that monitor events such as

NoC injections, coherence messages, cache hits and misses, external

memory accesses, and more.

Local Clock Generation. Most ESP FPGA-based prototypes

of SoCs utilize two primary clock sources: one for the NoC and

memory tiles and another for processors, accelerators, and the

auxiliary tile. Depending on the FPGA, the clocks can come from

DDR controller IPs included in the design or from clocks provided

by the FPGA’s board. It is possible to instantiate PLLs to provide an

independent clock source to each tile [27]. However, depending on

the number of tiles selected to use this feature, the available clocking

resources of the FPGA can either be prohibitive or negatively impact

the QoR of the system. Since ASIC implementations may desire

independent voltage and frequency control for each tile and the

NoC, we added the support for a DCO in each tile and a NoC DCO

in the auxiliary tile. The DCO is designed for the target technology

and is configured with a dedicated CSR. Reset-generation logic is

added to each tile with a DCO, so that reset is only deasserted after

the DCO has been running for a certain number of cycles. This per-

tile clocking scheme enables a communication-synchronous, globally

asynchronous locally synchronous (CS-GALS) approach, where all

tiles run at an independent frequency and communicate through a

synchronous NoC [24]. This strategy is key to the physical design

flow, as detailed in Sections 4 and 5.

Memory Integration. ESP includes a variety of on-chip memo-

ries for SoC designs [28]: 1) caches (L1, L2, and LLC); 2) shared local

memories 3) accelerators’ private local memories; 4) BootROM in

the Auxiliary tile; and 5) dual-port register files in the Ethernet

MAC. These memories, which are usually mapped to BRAMs in

FPGA-based prototypes, had to be remapped to technology-specific

SRAMs.

FPGA-link for DRAM Access. Due to the limited availability

of open-source DDR controllers and the difficulty of including one

in an academic tapeout, we chose to utilize an FPGA link as the

primary source of external memory access. In each memory tile, the

Authorized licensed use limited to: Columbia University Libraries. Downloaded on April 09,2023 at 14:29:55 UTC from IEEE Xplore. Restrictions apply.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA M. Cassel Dos Santos et al.

DDR controller that exists in FPGA-based ESP designs is replaced

by a bridge from the SoC to an FPGA board, which hosts DDR

controllers and the external DRAM. The FPGA bridge follows a

simple credit-based protocol, with the FPGA host providing a clock

to synchronize communication with the ESP chip. Messages are

transmitted in the form of ESP NoC packets, allowing the reuse of

components from the SoC in the design of the FPGA host.

JTAG for Single-Tile Test. In the context of chip manufac-

turing, ESP demands a robust pre- and post-silicon tile-based test

strategy, decoupled from the system interconnect. The need for a

NoC-independent Test Access Mechanism (TAM) of the SoC tiles is

tightly related to the complex multi-plane NoC architecture of ESP:

in case of logical bugs or physical design-based artifacts affecting

the functionality of the NoC, an alternative way to communicate

with the tiles is critical for diagnosing issues or independently test-

ing the contents of the tile. Hence, we designed a JTAG-based Debug

Unit to provide a new platform service, integrated in the ESP tile’s

socket, which enables a direct access to the tile leveraging the stan-

dard’s four dedicated pins: TDI, TDO, TCLK, and TMS [1]. The TMS

is asserted to connect the tile to the JTAG module in test mode and

is deasserted to restore the standard connection to the NoC router

in normal mode. The JTAG module is designed to bypass the NoC

and, at the same time, mimic its latency-insensitive protocol [5, 8]

while communicating to the tile. No additional modifications to the

tile’s internal logic are required to support the test mode.

4 TILE-BASED PHYSICAL DESIGN FLOW

A physical design flow has well defined steps (logic synthesis, floor-

plan, placement, routing, DRC, and LVS) that remain similar across

the different offerings of EDA vendors. This section explains how

our methodology provides productivity gains to a critical subset of

these steps through flexibility, robustness, and scalability.

We start by adopting design partitioning, i.e., dividing the top-

level design into smaller components. Design partitioning has sev-

eral advantages in physical design compared to a full design imple-

mentation, including: the ability to parallelize the implementation

by distributing the partitions to less powerful machines (scalability),

a shorter time to execute the flow, and an easier way to detect and

solve issues (robustness). The main drawback of design partitioning

is its negative impact on the difficult task of achieving timing clo-

sure of the top-level synchronous interfaces. Since ESP tiles share

the same tile-to-tile synchronous NoC router interface, the interface

delays from one tile to another can be made very similar by using

the right timing and floorplan constraints. As Section 5 discusses,

this approach enables easier timing closure of a synchronous NoC

and avoids the need to adopt an asynchronous NoC [25], which

might incur a higher latency penalty.

Timing Constraints. Independent of the total number of tiles

in ESP-based SoC, there are only four types of constraint files in the

flow: AUX, MEM, SLM/CPU/Acc, and the Top-Level. The AUX and MEM

files must include external interface constraints that are design de-

pendent because their external delay values must be set according

to the environment (e.g. packaging and board) to which the chip

will be exposed. The Top-Level constraint file shares the external

delays set into the AUX and MEM files with a minor discount to account

for the delay from the tile to the IO pad. The remaining external

Figure 3: Three approaches to top-level floorplanning.

interface constraints can be set according to protocol’s standards

(e.g. Ethernet, UART), with the exception of the clock frequency for

the FPGA bridge in the Memory tile, which varies according to the

test environment. Since the tiles use the same clock strategy and

NoC routers, the setting of the clock relationships and all tile-to-tile

external delays is design independent. There are only two design de-

pendent values common to each constraint file type: the NoC clock

frequency and the individual IP clock frequency. All technology-

dependent constraints (e.g. driving cells, clock transition, clock

buffers, etc.) must be set, but do not change across the top level and

all tiles. In the constraint files, these constraints are specified with

variables that are the mapped to the technology-specific parameters

in another file. These settings are reusable across different designs

that target the same technology process.

An architecture that allows for pre-defined constraints signif-

icantly reduces the chances of mistakes in defining timing con-

straints such as false paths, interface clock relationships, and in-

complete constraints (thus enhancing the robustness of the design

flow). Moreover, as the design scales, the only values that must be

specified are the IPs’ clock frequencies (highlighting scalability).

The small number of constraints that must be changed for a new

design or technology demonstrates the flexibility of the flow.

Power Constraints. All tiles can support Multi-Supply Voltage

(MSV) and Power Shut-Off (PSO). The use of a CS-GALS design

naturally defines the boundaries of the different power domains

inside the tiles. The power domains follow the clock domains: the IP

operates on the adjustable 𝑉𝑖𝑝 , while the NoC operates on a global

𝑉𝑛𝑜𝑐 . As a result, a configurable power constraint file [2] can be

used across all tiles. If, for example, tile A has MSV and tile B has

PSO capabilities, a simple parameter in this file is enough to make

it reusable, thus promoting scalability and robustness.

Top-Level Floorplan. Once all tiles are mapped to the target

technology, the top-level floorplan and the shape of the tiles can be

defined based on their sizes. There are several trade-offs in play in

this step. One option is to utilize a grid structure and allow different

heights and widths for rows and columns (Fig 3 (a)), thus allowing

for flexibility in tile sizes. While this approach can optimize area,

more irregular dimensions make the tiles less flexible. For example,

if the same tile is instantiated four times in the design and its

locations have different shapes, four physical implementations are

required (and four respins in case of some issue being detected).

We avoided this approach because it reduces the productivity gains

of the proposed methodology.

In contrast, a simple approach is to define the same shape for all

tiles (Fig 3 (b)). This approach facilitates top-level timing closure

because every route between tiles has a similar length. Further, it

allows for easily swapping the position of any tiles in the SoC and

even substituting tiles in case a last-minute change is needed before

Authorized licensed use limited to: Columbia University Libraries. Downloaded on April 09,2023 at 14:29:55 UTC from IEEE Xplore. Restrictions apply.

A Scalable Methodology for Agile Chip Development... ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

tapeout. A uniform tile size also best promotes reusability, since the

same GDS can be replicated multiple times for the same tile (i.e.,

only one processor tile implementation is needed for an SoC with

four processor cores). Similarly, if the verification team detects an

issue in a tile that is instantiated multiple times, only one respin

is required to fix all of those tiles. This regularity, however, forces

all tile sizes to match the size of the tile hosting the largest SoC

component, resulting in wasted area and degraded NoC frequency,

especially if many tiles can be smaller. To prevent this waste, smaller

SoC components can share the same tile and bigger ones can use

a cluster of multiple tiles (Fig. 3 (c)), thus keeping the advantages

of a uniform floorplan. However, this approach may bring some

contention in accessing the NoC router among components that

share a tile and reduced flexibility of the overall floorplan due to

positioning of multi-tile clusters.

Finally, if the use of relay stations [5] is not an option, then

the supportable NoC frequency depends on the longest tile’s edge.

Hence, the tile’s shape must be as close to a square as possible,

particularly for high performance SoCs.

Pin Assignment. To reduce wire length at the top level of the

chip, all tiles’ pins are placed in the same position with respect to

the corners of the tile: north ports, south ports, west ports, and east

ports are in the top-right, bottom-right, bottom-left, and bottom

right corners, respectively (Fig. 4 (a)). These locations are not design-

dependent and can be reused in other designs.

Macro Placement.Despite great progress with the introduction

of machine-learning techniques [29], macro placement remains

among the hardest steps of physical design to automate. In ESP,

there are two macro-cells types that require manual placement:

register files and SRAMs. Even though the DCO uses standard cells,

it is essential to constrain its height and width and use the same

dimensions in all tiles to achieve similar frequency characteristics;

the DCO location and routing, however, can vary from tile to tile.

Power Strategy. Due to the need for connections of the NoC

on all 4 sides (N/W/S/E) of a tile, the IP and NoC power domains

have square and inverted-L shapes, respectively (Fig. 4 (b)), which

is reusable across all tiles. Its width depends on the density of the

NoC-domain logic and the routing congestion to the output pins.

SRAM power supply can easily be partitioned into core volt-

age, supplying the bitcells, and periphery voltage, supplying the

surrounding logic. The sense amplifiers and line drivers naturally

provide a level-shifter between the two domains. Typically, the

SRAM minimum voltage is limited by the array rather than by

periphery logic. Hence, we add a third voltage 𝑉𝑚𝑒𝑚 for the SRAM

array, while the SRAM periphery is connected to 𝑉𝑖𝑝 . In this way,

no explicit level shifters are needed between the SRAM and IP logic.

For technologies that have several metal layers, the power stripes

are distributed as a grid inmost layers. The top level uses the highest

layer to connect all tiles to their corresponding power domain.

Section 5 elaborates our top-level striping methodology. At the tile

level, higher layer levels form a grid including𝑉𝑖𝑝 ,𝑉𝑛𝑜𝑐 ,𝑉𝑚𝑒𝑚 , and

𝑉𝑠𝑠 to maximize the power integrity and pin area for connection to

the chip top level. Medium layers’ stripes are split between the IP

and NoC domains. While𝑉𝑖𝑝 ,𝑉𝑚𝑒𝑚 , and𝑉𝑠𝑠 form the power grid in

the IP domain,𝑉𝑖𝑝 ,𝑉𝑛𝑜𝑐 , and𝑉𝑠𝑠 form the power grid over the NoC

domain – 𝑉𝑖𝑝 is needed to supply the level shifters. We consider

the lowest medium layer as the lowest layer that supplies memory

Figure 4: Breakdown of power domains and pin assignment.

macros. Finally, lower layers form a two-stripe grid, 𝑉𝑛𝑜𝑐/𝑉𝑠𝑠 and
𝑉𝑖𝑝/𝑉𝑠𝑠 , to supply the standard cells. In these levels, the 𝑉𝑚𝑒𝑚 grid

is no longer needed to supply memories, and level shifters can

automatically connect to the 𝑉𝑖𝑝 of medium layers, thus freeing

routing tracks for logic signals. Fig. 4 (c) exemplifies this strategy

for the 13-metal-layer process technology we used in both chips

discussed in Section 8.

Similar power design can be adapted to technology processes

with fewer metal layers. For example, Fig. 4 (d) shows how a 6-layer

grid could be built: a shared 𝑉𝑛𝑜𝑐/𝑉𝑠𝑠 grid is made with metals M5

and M6 to connect to the other tiles, while M6𝑉𝑖𝑝 is connected to a

bump directly over the tile to minimize routing congestion for the

top-level power. The grids between M1 and M5 are optional.

5 TOP-LEVEL PHYSICAL DESIGN FLOW

The inherent regularity of the ESP tile-based architecture forms a

unified array in the top-level floorplan. The locations of the AUX

and MEM tiles, the only tiles with external interfaces, should be set

close to their respective IO pads. All other tiles can freely change lo-

cations at any point in the design cycle.We adopted a power-domain

array package and a hierarchical timing-closure flow that match the

flexibility of the ESP architecture and support agile design-respin

cycles.

Package design affects the top-level power strategy. In ourmethod-

ology we focused on flip-chip packages. Compared to conventional

wire-bond packages, flip-chip packages scale better to the needs of

larger SoC designs, which have a large number of required I/Os and

power supplies. A similar power strategy can still be used, however,

for smaller SoCs that utilize wire-bond packages.

SoC Power Allocation. Fig. 5 (a) exemplifies the flexible power

domain allocation strategy by using a symmetric power domain

array. Each power domain consists of at least 20 power bumps to

sustain sufficient workload current. During the implementation, the

power domain array is flexibly grouped into a few power domain

clusters based on the SoC floorplan. For example, for SoC Case

1, the power domains are grouped based on the tile functionality

and physical location to support flexible power sequencing while

maintaining low IR drop. In this case, there are 16 𝑉𝑑𝑑/𝑉𝑠𝑠 arrays
plus a global 𝑉𝑑𝑑/𝑉𝑠𝑠 supplying the NoC. As the design scales,

more power domain clusters are allocated to provide even power

Authorized licensed use limited to: Columbia University Libraries. Downloaded on April 09,2023 at 14:29:55 UTC from IEEE Xplore. Restrictions apply.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA M. Cassel Dos Santos et al.

Figure 5: (a) Symmetric power domain array for flexible

power cluster allocation, (b) Hierarchical timing closure flow.

distribution and testing flexibility, as shown Fig. 5(a) for SoC Case

2. During the physical design, the power grids of all power domains

are distributed across the chip to decouple the SoC floorplan with

the power striping step. The IR drop to each tile is carefully analyzed

to guarantee a balanced power distribution.

SoC Timing Closure. Achieving timing closure for a large SoC

design is a hard task. We adopted a hierarchical timing-closure flow

for independent timing signoff between the local clock frequency of

each tile and the global NoC clock frequency, as shown in Fig. 5(b).

With our CS-GALS clocking strategy, each tile has its own clock

domain and connects to the global synchronous NoC clock via an

asynchronous interface. This allows the physical design of all tiles

to be conducted in parallel, while the global timing is closed later

based on the interface logic model (ILM) timing models. During the

top-level global clock timing closure, only the clock skews between

neighboring tiles need to be constrained, which significantly relaxes

traditional timing closure requirements. Such a timing closure flow

also supports flexible reuse and respin of pre-existing IPs, further

trimming design time.

6 VERIFICATION

In an agile chip design framework, verification can prove chal-

lenging due to small team sizes and short design cycles. To make

verification of complex, heterogeneous SoCs tractable given per-

sonnel and time constraints, we adopt a system-level verification

strategy that focuses on testing the integration of all new compo-

nents and complete system functionality. This strategy is based on

two main assumptions. First, we assume that any OSH components

taken from third-parties and any new in-house designed IPs (i.e. a

new hardware accelerator) to be included in a tapeout are already

thoroughly verified with unit-level testbenches by their designers.

Second, we leverage the fact that ESP’s NoC, buses, sockets, and

platform services are pre-verified and do not require additional

scrutiny from the verification team (unless the current design mod-

ifies some of these components). Our strategy utilizes full-system

RTL simulation of bare-metal applications, netlist-level simulation

with simplified bare-metal applications, and FPGA emulation to

run longer tests that would be intractable in simulation. We also

leverage logical equivalence checking (LEC) at multiple stages of

the physical design process for verification of the implementation.

Figure 6: (a) Example of a full-system bare-metal simulation

for verification, (b) The chip-testing environment.

Each full-system RTL Simulation test consists of a bare-metal

application, written in C, which will run on one of the SoC’s CPUs

to stimulate a component of interest. As shown in Fig. 6 (a), to test a

hardware accelerator, the C application will have the CPU prepare

a dataset for the accelerator to operate on, configure and start the

accelerator, wait for the accelerator to complete, and then validate

the results compared to the golden values, computed from software.

Since the accelerator is already verified by its designer, the test is

designed to verify the aspects of the accelerator that are key to its

integration, such as configuration registers, DMA, and interrupts.

The C application is cross-compiled for the chosen cores’ ISA

and is loaded into a simulation model of external memory. After

reset, the CPU executes ESP’s first-stage bootloader and then jumps

to the start address of the program in memory. In addition to testing

the target component, each program also tests the CPUs, memory

interfaces, I/O, and NoC, providing further in-context verification

of these critical components of the SoC. The software-level testing

approach greatly lowers the effort required from the verification

team to write new tests. Furthermore, all accelerator tests – which

constitute a majority of the tests in the chips we taped out – follow

the same template, and only the input data, configuration parame-

ters, and golden outputs must change. The development of these

exact tests serves multiple purposes, as they can also be used to

test these IPs in the fabricated silicon.

Netlist-Level Simulation is used to verify the synthesized

netlist for each tile of the SoC. In order to keep simulation times

reasonable, we perform this simulation for one target tile at a time.

Thanks to the hierarchical physical design flow, it is easy to instanti-

ate the synthesized netlist for one tile in the top-level design, while

keeping the other tiles as RTL. For each tile, we conduct a similar

test as for RTL simulation, but modify the test to be as minimal

as possible (using small datasets, removing printfs, hard-coding
parameters that are normally discovered, etc.) to reduce simulation

times. We also conduct one small test of the reset sequence and

check each tile’s ID CSR using the entire SoC’s netlist.

FPGA Emulation complements RTL and netlist-level simula-

tion by allowing the execution of long complex workloads that

would not be feasible in simulation. Thanks to ESP’s rapid FPGA-

based design flow, we can quickly generate prototypes of the target

chip for one or more FPGAs. Once the designs are generated, we

Authorized licensed use limited to: Columbia University Libraries. Downloaded on April 09,2023 at 14:29:55 UTC from IEEE Xplore. Restrictions apply.

A Scalable Methodology for Agile Chip Development... ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

can boot Linux and run applications with large datasets that invoke

accelerators. These tests give confidence in the stability and robust-

ness of the target RTL. While being very efficient, FPGA emulation

cannot fully replace RTL and netlist-level simulations due to the

fundamental differences between the RTL of the target ASIC and

that of the emulated FPGA design: (a) the emulated FPGA design

contains DDR controllers, while the ASIC contains a custom bridge

to an FPGA that provides DRAM access; (b) IPs that are generated

with HLS will have vastly different RTL for different technologies;

(c) FPGA designs use an external clock globally, whereas ASIC

designs can instantiate internal clock generators for the NoC and

each tile; and (d) the ASIC design relies on technology-specific IPs,

such as memories, DCOs, and pads. Furthermore, verifying the

entire SoC design by emulating it on a single FPGA device is often

impossible due to space limitations. Multiple FPGA prototypes that

each contain a subset of the chip design may be needed to achieve

full coverage in this branch of the verification plan.

Equivalence Checking executes in parallel to functional verifi-

cation. It formally confirms whether the synthesis’ netlist output

matches the RTL. A similar comparison assures the logic equiva-

lence of the netlist after place and route. Because gate-level sim-

ulations are abbreviated, these checks raise our confidence in the

implementation. For the tiles with multi-supply voltage, formal

checking is executed between the power constraint file and the

netlist to assure that the low-power cells were properly included.

7 TESTING

Our ASIC design flow leverages the testing infrastructure developed

over many years of FPGA prototyping with ESP, along with some

additional new features to improve testability, which enables rapid

bring-up and post-silicon validation. There are a few requirements

for the test board that mounts the packaged SoC, as shown in Fig. 6

(b). The primary debug interface for ESP uses Ethernet, which is

enabled with the instantiation of a MAC and EDCL debug unit from

Cobham Gaisler in the auxiliary tile [10, 23]. A UART connection

to a host PC is also required for serial output from the SoC. Finally,

a connection to an FPGA – we use an FPGA Mezzanine Card (FMC)

connector – provides access to external DRAM for SoCs without a

DDR controller. Our testing flow is described as follows.

1. Power Up. Upon initial power-up of the chip, we test the

full system for any major electrical issues (e.g. shorts) and check

the output from the available DCOs with SMA connections on the

test board – another recommended feature for board design. Once

the DCOs are validated, we proceed with trying to establish an

Ethernet connection to the SoC. In our test setup, we connect the

test board to a router on the local network, allowing remote testing

from any PC. Once an Ethernet connection is established, we can

use the ESPLink debug application. ESPLink is an application that

runs on a host PC that utilizes the Ethernet connection to access any

memory-mapped region of the SoC. ESPLink has a simple command

line interface and can be used to read/write individual registers

or dump/load contiguous regions of memory to/from a binary or

hex file. With ESPlink, for example, the Ethernet connection can

be verified by reading a register with a known value (e.g. the NoC

DCO CSR) in the auxiliary tile.

2. NoC Status and Memory Access. With an Ethernet connec-

tion established, we can begin to test the operation of the NoC by

trying to read registers in each tile from ESPLink. By accessing the

tile ID register in each tile, we verify that we can read from all tiles,

and if the value is correct, it means the tile IDs were successfully

sent from the auxiliary tile at reset. Success in this test gives strong

indication of the functionality of the NoC Plane 6. We can then try

to write to and read from external DRAM through the link to the

FPGA device, also stimulated by ESPLink.

3. Running Bare-Metal Programs. Once memory access is

established, we try to run some bare-metal programs on the proces-

sor tiles. To do this, the compiled bootloader is first written to the

bootloader memory in the auxiliary tile with ESPLink. Then, the

compiled program is written to external DRAM through the FPGA

host, also utilizing ESPLink. Finally, ESPLink sends the soft reset to

the SoC, which triggers the processor cores to start executing. They

initially execute the bootloader from the RAM in the auxiliary tile

and then jump to the address of the program in external DRAM. A

simple “Hello World” program can be used to further validate the ex-

ternal memory access, test NoC Planes 1-3, and check functionality

of the UART interface. Following this, we can run bare-metal tests

that invoke accelerators to validate the remaining IPs and check

NoC Planes 4 and 5. As mentioned before, the same bare-metal

programs run during verification can be reused during bring-up,

thus eliminating the need to write new programs at this stage.

4. Boot Linux and Data Collection. At this point, the SoC is

ready to boot Linux. For RISC-V, the device tree (which is included

with the bootloader binary) must be configured with the correct

frequencies for the processors and UART connection. If there are

issues with any of the memory tiles, then the device tree must

also be set to only use addresses within memory ranges that have

been validated successfully. We have found it to be faster and easier

to collect data while running an operating system. Creating V/F

curves can require many runs of the same program, continuously

increasing frequency of the local clock until failure. With Linux,

this can be done without resetting the chip each time.

Backup: JTAG for Single-Tile Test. The JTAG logic bypasses

the connection between the tile and the NoC and packets are seri-

alized/deserialized over two pins connected to the FPGA host. The

FPGA host can then stimulate the tile with NoC packets, and the

tile reacts as if it was connected to the NoC. Upon receiving the

response from the tile, the FPGA host can check the outputs against

the expected NoC packets to validate the execution. This is useful

for debugging and communicating directly with the tile in case of

manufacturing issues in the NoC.

8 EXPERIENCEWITH TWO CHIP DESIGNS

The proposed methodology was first employed in the development

of a 4.65x4.65mm chip with a 12nm technology. With a 4x4-tile

ESP architecture, the SoC targets the swarm-based perception do-

main [24]. In the span of 4 months, a team of 10 engineers installed

and configured the technology, set the EDA tools’ scripts, enhanced

the ESP platform to support ASIC development, integrated the OSH

components, developed applications utilizing the accelerators, and

performed the physical design flow. Fig 7(a) shows the breakdown

of the design cycle of this chip. The most time-consuming part of

Authorized licensed use limited to: Columbia University Libraries. Downloaded on April 09,2023 at 14:29:55 UTC from IEEE Xplore. Restrictions apply.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA M. Cassel Dos Santos et al.

Figure 7: Design time breakdown.

the tile signoff step was the implementation of the first tile. Once

we achieved a physical design flow without human intervention

that met the constraints and resulted in less than 20 DRC violations

in the layout signoff tool, repeating this step on all other tiles was

mostly a matter of machine runtime, showing the robustness and

reusability of the methodology. The physical implementation of

each tile, from RTL to GDS, took 12 hours on a 16-core, 64GB RAM

machine. The SoC integration and final physical verification took

51 hours on a 64-core, 376GB RAM machine.

This first chip has 16 tiles (4 CPUs, 4 MEMs, 3 Fast Fourier Trans-

form (FFT) accelerators, 3 copies of the NVIDIA NVDLA [30], 1

AUX, and 1 Viterbi Decoding accelerator) and multi-supply voltage

in all accelerators. The NoC reaches 800 MHz at 0.8V and the tiles

can reach up to 1.5GHz as the voltage/frequency curves in Fig. 8(a)

show. Fig. 8(b) shows the chip’s performance for the application

compared to an FPGA implementation of the same SoC. To keep

the methodology simple in this first proof of concept, we use the

same size for all tiles, which results in 15% extra area overhead.

With the design of a second chip, we scaled from 16 to 36 tiles,

resulting in a 8x8mm area in the same target technology. New

features were added to the ESP architecture such as new CSRs

in the NoC domain to support power shut-off and integration of

a power management unit. Seven new accelerators were added

to the previous three. The physical design flow was adjusted to

accommodate more components in the NoC domain. To save area,

one cluster of four tiles was used for a larger accelerator and three

smaller accelerators were combined into a single tile. The machine

runtime for the implementation of the tiles did not change. The

SoC integration, however, took 66 hours to complete, 29% more

than the first chip. Fig 7(b) shows the design cycle’s breakdown.

Our methodology was tested on many fronts during the design

cycle. The most critical was a bug identified by the verification

team five days before tape-out that affected eleven tiles. Thanks

to the tiles’ regularity and a robust autonomous flow, we were

able to fix the bug in all the tiles (only seven respins were needed

due to tile duplications) and integrate them in the SoC before the

deadline. Our testing methodology allowed for a complete bring-up

and analysis of the first chip in three weeks, including booting

Linux and running complex applications that invoke accelerators.

9 RELATEDWORK

In recent years, several methodologies have been proposed to tackle

the complexity of SoC design. Khailany et al. presented a modular

physical design methodology for high productivity SoC design

Figure 8: Performance of the first chip [24].

that combines some architectural decisions such as asynchronous

NoC, GALS, and latency-insensitive channels with physical design

partitioning [25]. OpenROAD leverages the OpenLane tool-set [31]

to offer a full open-source physical design flow by providing scripts

and documentation for chip design. Chipyard is an IP library for

agile SoC design based on the Chisel hardware description language

for SoC integration [3]. Chipyard offers the Hammer [36] physical

design flow to guide non-experts with a set of APIs that hide the

complexity of EDA tools and their interactions with the technology.

Hammer supports multiple EDA vendors and technologies.

10 CONCLUDING REMARKS

We presented an agile chip-design methodology that builds on top

of the open-source ESP platform to deliver gains in terms of flexi-

bility, robustness, scalability and, ultimately, design productivity

for complex heterogeneous SoCs. To develop our methodology, we

made various enhancements to the ESP tile-based architecture (e.g.,

support for a CS-GALS clocking scheme) and made strategic deci-

sions about the physical design (e.g., defining a robust power plan).

Concrete benefits of our methodology include smooth integration

of SoC components, fast respin, reduction of design time through

tile reuse and parallel machine distribution, usage of affordable

machines for most stages of the flow, comprehensive integration

verification, and an adaptable flow across multiple designs and tech-

nologies. The methodology was used to successfully design and test

first a heterogeneous SoC with 16 tiles and then a more complex

SoC with 36 tiles. The two chips were designed in essentially the

same time by the same team of 10 engineers working remotely.

Our methodology is under continuous development, with many

new features under consideration. The support of an open-source

tool set and PDK, such as OpenLane [31] and Skywater [34], respec-

tively, would enable an open-source release of the methodology to

the community. An automatic top and tile-level floorplan would

improve productivity in one of the most time-consuming tasks in

physical design. Improvements in design for testing (DFT) would in-

crease post-silicon observability and controllability, while keeping

the pin count low as the design size and complexity scales.

Acknowledgments. This research was developed, in part, with funding from

the Defense Advanced Research Projects Agency (DARPA), and in part with funding

from the Army Research Office under Grant Number W911NF-19-1-0476. The views,

opinions and/or other findings expressed are those of the authors and should not be

interpreted as representing the official views or policies (either expressed or implied)

of the Department of Defense, the Army Research Office, or the U.S. Government.

Distribution Statement”A”: Approved for Public Release, Distribution Unlimited. The

U.S. Government is authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation herein.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on April 09,2023 at 14:29:55 UTC from IEEE Xplore. Restrictions apply.

A Scalable Methodology for Agile Chip Development... ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

REFERENCES
[1] 2013. IEEE Standard for Test Access Port and Boundary-Scan Architecture -

Redline. IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001) - Redline (2013),
1–899.

[2] 2019. IEEE Standard for Design and Verification of Low-Power, Energy-Aware
Electronic Systems. IEEE Std 1801-2018 (2019), 1–548. https://doi.org/10.1109/
IEEESTD.2019.8686430

[3] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs. IEEE Micro 40, 4 (2020), 10–21.
https://doi.org/10.1109/MM.2020.2996616

[4] Mark Bohr. 2007. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper.
IEEE Solid-State Circuits Society Newsletter 12, 1 (2007), 11–13. https://doi.org/10.
1109/N-SSC.2007.4785534

[5] Luca P. Carloni. 2015. From Latency-Insensitive Design to Communication-Based
System-Level Design. Proc. IEEE 103, 11 (2015), 2133–2151. https://doi.org/10.
1109/JPROC.2015.2480849

[6] Luca P. Carloni. 2016. Invited: The Case for Embedded Scalable Platforms. In
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https:
//doi.org/10.1145/2897937.2905018

[7] Luca P. Carloni, Emilio G. Cota, Giuseppe Di Guglielmo, Davide Giri, Jihye
Kwon, Paolo Mantovani, Luca Piccolboni, and Michele Petracca. 2019. Teaching
Heterogeneous Computing with System-Level Design Methods. In Proceedings
of the Workshop on Computer Architecture Education. Article 4, 8 pages. https:
//doi.org/10.1145/3338698.3338893

[8] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli.
2001. Theory of latency-insensitive design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 20, 9 (2001), 1059–1076. https:
//doi.org/10.1109/43.945302

[9] Ralph K. Cavin, Paolo Lugli, and Victor V. Zhirnov. 2012. Science and Engineering
Beyond Moore’s Law. Proc. IEEE 100, Special Centennial Issue (2012), 1720–1749.
https://doi.org/10.1109/JPROC.2012.2190155

[10] Cobham Gaisler. [n.d.]. GRLIB IP Library. https://www.gaisler.com/index.php/

downloads/leongrlib.
[11] Robert Colwell. 2013. The chip design game at the end of Moore’s law. In 2013

IEEE Hot Chips 25 Symposium (HCS). 1–16. https://doi.org/10.1109/HOTCHIPS.
2013.7478302

[12] Emilio G. Cota, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni.
2015. An Analysis of Accelerator Coupling in Heterogeneous Architectures. In
Proceedings of the Design Automation Conference (DAC) (San Francisco, California)
(DAC’15). ACM, New York, NY, USA, Article 202, 6 pages. https://doi.org/10.
1145/2744769.2744794

[13] William J. Dally, Yatish Turakhia, and Song Han. 2020. Domain-specific hardware
accelerators. Commun. ACM 63, 7 (2020), 48–57. https://doi.org/10.1145/3361682

[14] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest
Bassous, and Andre R. LeBlanc. 1974. Design of ion-implanted MOSFET’s with
very small physical dimensions. IEEE Journal of Solid-State Circuits 9, 5 (1974),
256–268. https://doi.org/10.1109/JSSC.1974.1050511

[15] Cobham Gaisler. [n.d.]. LEON3 Processor. www.gaisler.com/index.php/products/

processors/leon3.
[16] Davide Giri, Kuan-Lin Chiu, Giuseppe Di Guglielmo, Paolo Mantovani, and

Luca P. Carloni. 2020. ESP4ML: Platform-Based Design of Systems-on-Chip for
Embedded Machine Learning. Proceedings of the Design, Automation and Test in
Europe Conference (DATE).

[17] Davide Giri, Kuan-Lin Chiu, Guy Eichler, Paolo Mantovani, and Luca P. Carloni.
2021. Accelerator Integration for Open-Source SoC Design. IEEE Micro (Special
Issue: FPGAs in Computing) 41, 4 (2021), 8–14. https://doi.org/10.1109/MM.2021.
3073893

[18] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2018. Accelerators and
Coherence: An SoC Perspective. IEEE Micro (Special Issue: Hardware Acceleration)
38, 6 (Nov. 2018), 36–45.

[19] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2018. NoC-Based Support
of Heterogeneous Cache-Coherence Models for Accelerators. Proceedings of the
Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS).

[20] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2019. Runtime Reconfigurable
Memory Hierarchy in Embedded Scalable Platforms. Proceedings of the Asia and
South Pacific Design Automation Conference (ASPDAC).

[21] Gagan Gupta, Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam.
2017. Kickstarting Semiconductor Innovation with Open Source Hardware.
Computer 50, 6 (2017), 50–59. https://doi.org/10.1109/MC.2017.162

[22] MarkHorowitz. 2014. 1.1 Computing’s energy problem (andwhat we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC). 10–14. https://doi.org/10.1109/ISSCC.2014.6757323

[23] Marko Isomäki. 2004. Processor Debugging Through Ethernet. Master’s thesis.

[24] Tianyu Jia, PaoloMantovani, Maico Cassel dos Santos, Davide Giri, Joseph Zucker-
man, Erik Jens Loscalzo, Martin Cochet, Karthik Swaminathan, Gabriele Tombesi,
Jeff Jun Zhang, Nandhini Chandramoorthy, John-David Wellman, Kevin Tien,
Luca Carloni, Kenneth Shepard, David Brooks, Gu-Yeon Wei, and Pradip Bose.
2022. A 12nm Agile-Designed SoC for Swarm-Based Perception with Hetero-
geneous IP Blocks, a Reconfigurable Memory Hierarchy, and an 800MHz Multi-
Plane NoC. In European Solid-State Circuits Conference (ESSCIRC).

[25] Brucek Khailany, Evgeni Krimer, Rangharajan Venkatesan, Jason Clemons, Joel S.
Emer, Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinckney,
Yakun Sophia Shao, Shreesha Srinath, Christopher Torng, Sam Likun Xi, Yanqing
Zhang, and Brian Zimmer. 2018. INVITED: A Modular Digital VLSI Flow for
High-Productivity SoC Design. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). 1–6. https://doi.org/10.1109/DAC.2018.8465897

[26] lowRISC. [n.d.]. Ibex RISC-V Core. https://github.com/lowRISC/ibex.
[27] Paolo Mantovani, Emilio G. Cota, Kevin Tien, Christian Pilato, Giuseppe

Di Guglielmo, Ken Shepard, and Luca P. Carloni. 2016. An FPGA-based In-
frastructure for Fine-grained DVFS Analysis in High-performance Embedded
Systems. In Proceedings of the Design Automation Conference (DAC). 157:1–157:6.

[28] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni, Joseph
Zuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato, and Luca P. Car-
loni. 2020. Agile SoC Development with Open ESP : Invited Paper. In 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD). 1–9.

[29] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim
Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi,
Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V.
Le, James Laudon, Richard Ho, Roger Carpenter, and Jeff Dean. 2021. A graph
placement methodology for fast chip design. Nature 594, 7862 (2021), 207–212.
https://doi.org/10.1038/s41586-021-03544-w

[30] NVIDIA. 2017. NVIDIA Deep Learning Accelerator (NVDLA). www.nvdla.org.
[31] OpenLANE. [n.d.]. . https://github.com/The-OpenROAD-Project/OpenLane
[32] RISC-V. [n.d.]. . Retrieved July 31, 2022 from https://riscv.org/
[33] hls4ml. [n.d.]. https://fastmachinelearning.org/hls4ml.
[34] SkyWater. [n.d.]. . https://github.com/google/skywater-pdk
[35] Ed Sperling. 2014. How much will that chip cost? Retrieved July 31, 2022 from

http://semiengineering.com/how-much-will-that-chip-cost/
[36] Edward Wang, Colin Schmidt, Adam Izraelevitz, John Wright, Borivoje Nikolić,

Elad Alon, and Jonathan Bachrach. 2020. A Methodology for Reusable Physical
Design. In 2020 21st International Symposium on Quality Electronic Design (ISQED).
243–249. https://doi.org/10.1109/ISQED48828.2020.9136999

[37] Rich Wawrzyniak. 2021. Analyzing RISC-V CPU market for SiP, SoCs, AI, and
Design Starts. https://semico.com/content/analyzing-risc-v-cpu-market-sip-
socs-ai-and-design-starts/

[38] Young Jin Yoon, Nicola Concer, Michele Petracca, and Luca P. Carloni. 2013.
Virtual Channels and Multiple Physical Networks: Two Alternatives to Improve
NoC Performance. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 32, 12 (2013), 1906–1919. https://doi.org/10.1109/TCAD.
2013.2276399

[39] Florian Zaruba and Luca Benini. 2019. The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core
in 22-nm FDSOI Technology. IEEE Transactions on Very Large Scale Integration
Systems 27, 11 (2019), 2629–2640.

[40] Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Car-
loni. 2021. Cohmeleon: Learning-Based Orchestration of Accelerator Coherence
in Heterogeneous SoCs. In Proceedings of the IEEE/ACM Symposium on Microar-
chitecture (MICRO).

[41] Joseph Zuckerman, Paolo Mantovani, Davide Giri, and Luca P. Carloni. 2022. En-
abling Heterogeneous, Multicore SoC Research with RISC-V and ESP. Proceedings
of the Workshop on Computer Architecture Research with RISC-V (CARRV).

Authorized licensed use limited to: Columbia University Libraries. Downloaded on April 09,2023 at 14:29:55 UTC from IEEE Xplore. Restrictions apply.

