Matthew L. Johnston, Erik F. Young, Kenneth L. Shepard Whole-blood immunoassay for γH2AX as a radiation biodosimetry assay with minimal sample preparation, J Radiation and Environmental Biophysics (2015); doi: 10.1007/s00411-015-0595-4

The current state of the art in high-throughput minimally invasive radiation biodosimetry involves the collection of samples in the field and analysis at a centralized facility. We have developed a simple biological immunoassay for radiation exposure that could extend this analysis out of the laboratory into the field. Such a forward placed assay would facilitate triage of a potentially exposed population. The phosphorylation and localization of the histone H2AX at double-stranded DNA breaks has already been proven to be an adequate surrogate assay for reporting DNA damage proportional to radiation dose. Here, we develop an assay for phosphorylated H2AX directed against minimally processed sample lysates. We conduct preliminary verification of H2AX phosphorylation using irradiated mouse embryo fibroblast cultures. Additional dosimetry is performed using human blood samples irradiated ex vivo. The assay reports H2AX phosphorylation in human blood samples in response to ionizing radiation over a range of 0–5 Gy in a linear fashion, without requiring filtering, enrichment, or purification of the blood sample.